skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Williams, Christopher B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2026
  2. Free, publicly-accessible full text available August 1, 2025
  3. Abstract The main research goal of this study is to decipher the intercorrelation between process-induced thermal-structure-property relationships of Stainless Steel 316L fabricated by laser powder bed fusion. The objective therein is achieved by explaining and quantifying the effect of processing parameters and part-scale thermal history on microstructure evolution and mechanical properties of these parts. Multiple previous works have correlated the effect of process parameters on flaw formation, microstructural features evolved and functional properties; however, a lack of understanding remains in the underlying effect of the thermal history on part microstructure and mechanical properties. The thermal distribution, or thermal history, of the part as it is being built layer-by-layer is influenced by the processing parameters, material properties and shape of the part. The thermal history influences the microstructure by changing the grain structure evolution, which affects the part properties. Therefore, the novelty of this paper lies in illuminating the process-thermal history-microstructure-property relationship in laser powder bed fusion. Characterization of tensile specimens processed at a variety of conditions reveal a direct influence of the choice of process parameters on the dendritic structure and the grain orientations. A high energy density leads to <100> textured columnar dendritic grains and low energy density leads to randomly oriented equiaxed grains as a result of the shifting heat influx. The tensile properties are correlated with the inherent microstructure. Through future work involving fracture surface analysis, the texture, grain size and porosity is expected to influence the inherent fracture mechanism. This work demonstrates that an understanding of thermal distribution within a printed part can inform the choice of processing conditions to generate the final microstructure as per the specified functional requirements. Thus, this paper lays the foundation for future prediction and control of microstructure and functional properties in laser powder bed fusion by identifying the root fundamental thermal phenomena that influences the microstructure evolution and part properties. 
    more » « less
  4. Free, publicly-accessible full text available July 1, 2025
  5. null (Ed.)
  6. null (Ed.)
  7. Unparalleled temporal and spatial control of colloidal chemical processes introduces immense potential for the manufacturing, modification, and manipulation of latex particles. This review highlights major advances in photochemistry, both as stimulus and response, to generate unprecedented functionality in polymer colloids. Light-based chemical modification generates polymer particles with unique structural complexity, and the incorporation of photoactive functionalities transforms inert particles into photoactive nanodevices. Latex photo-functionality, which is reflected in both the colloidal and coalesced states, enables photochromism, photoswitchable aggregation, tunable fluorescence, photoactivated crosslinking and solidification, and photomechanical actuation. Previous literature explores the capacity of photochemistry, which complements the rheological and processing advantages of latex, to expand beyond traditional coatings applications and enable disruptive technologies in critical areas including nanomedicine, data security, and additive manufacturing. 
    more » « less
  8. null (Ed.)