skip to main content

Search for: All records

Creators/Authors contains: "Williams, Jamal R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2025
  2. Abstract

    Visual working memory is highly limited, and its capacity is tied to many indices of cognitive function. For this reason, there is much interest in understanding its architecture and the sources of its limited capacity. As part of this research effort, researchers often attempt to decompose visual working memory errors into different kinds of errors, with different origins. One of the most common kinds of memory error is referred to as a “swap,” where people report a value that closely resembles an item that was not probed (e.g., an incorrect, non-target item). This is typically assumed to reflect confusions, like location binding errors, which result in the wrong item being reported. Capturing swap rates reliably and validly is of great importance because it permits researchers to accurately decompose different sources of memory errors and elucidate the processes that give rise to them. Here, we ask whether different visual working memory models yield robust and consistent estimates of swap rates. This is a major gap in the literature because in both empirical and modeling work, researchers measure swaps without motivating their choice of swap model. Therefore, we use extensive parameter recovery simulations with three mainstream swap models to demonstrate how the choice of measurement model can result in very large differences in estimated swap rates. We find that these choices can have major implications for how swap rates are estimated to change across conditions. In particular, each of the three models we consider can lead to differential quantitative and qualitative interpretations of the data. Our work serves as a cautionary note to researchers as well as a guide for model-based measurement of visual working memory processes.

    more » « less
  3. Visual object recognition is not performed in isolation but depends on prior knowledge and context. Here, we found that auditory context plays a critical role in visual object perception. Using a psychophysical task in which naturalistic sounds were paired with noisy visual inputs, we demonstrated across two experiments (young adults; ns = 18–40 in Experiments 1 and 2, respectively) that the representations of ambiguous visual objects were shifted toward the visual features of an object that were related to the incidental sound. In a series of control experiments, we found that these effects were not driven by decision or response biases ( ns = 40–85) nor were they due to top-down expectations ( n = 40). Instead, these effects were driven by the continuous integration of audiovisual inputs during perception itself. Together, our results demonstrate that the perceptual experience of visual objects is directly shaped by naturalistic auditory context, which provides independent and diagnostic information about the visual world.

    more » « less