skip to main content

Search for: All records

Creators/Authors contains: "Williams, Jonathan P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2024

    We present Atacama Large Millimeter/sub-millimeter Array (ALMA) Cycle-5 observations of HBC 494, as well as calculations of the kinematic and dynamic variables which represent the object’s wide-angle bipolar outflows. HBC 494 is a binary FU Orionis type object located in the Orion A molecular cloud. We take advantage of combining the ALMA main array, Atacama Compact Array (ACA), and Total Power (TP) array in order to map HBC 494’s outflows and thus, estimate their kinematic parameters with higher accuracy in comparison to prior publications. We use 12CO, 13CO, C18O, and SO observations to describe the object’s outflows, envelope, and disc, as well as estimate the mass, momentum, and kinetic energy of the outflows. After correcting for optical opacity near systemic velocities, we estimate a mass of 3.0 × 10−2 M⊙ for the southern outflow and 2.8 × 10−2 M⊙ for northern outflow. We report the first detection of a secondary outflow cavity located approximately 15 arcsec north of the central binary system, which could be a remnant of a previous large-scale accretion outburst. Furthermore, we find CO spatial features in HBC 494’s outflows corresponding to position angles of ∼35° and ∼145°. This suggests that HBC 494’s outflows are most likely a composite of overlapping outflows from two different sources, i.e. HBC 494a and HBC 494b, the two objects in the binary system.

    more » « less
  3. Modern machine learning algorithms are capable of providing remarkably accurate point-predictions; however, questions remain about their statistical reliability. Unlike conventional machine learning methods, conformal prediction algorithms return confidence sets (i.e., set-valued predictions) that correspond to a given significance level. Moreover, these confidence sets are valid in the sense that they guarantee finite sample control over type 1 error probabilities, allowing the practitioner to choose an acceptable error rate. In our paper, we propose inductive conformal prediction (ICP) algorithms for the tasks of text infilling and part-of-speech (POS) prediction for natural language data. We construct new ICP-enhanced algorithms for POS tagging based on BERT (bidirectional encoder representations from transformers) and BiLSTM (bidirectional long short-term memory) models. For text infilling, we design a new ICP-enhanced BERT algorithm. We analyze the performance of the algorithms in simulations using the Brown Corpus, which contains over 57,000 sentences. Our results demonstrate that the ICP algorithms are able to produce valid set-valued predictions that are small enough to be applicable in real-world applications. We also provide a real data example for how our proposed set-valued predictions can improve machine generated audio transcriptions. 
    more » « less
  4. Abstract

    We present the results from an Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm continuum and12CO (J= 2 − 1) line survey spread over 10 deg2in the Serpens star-forming region of 320 young stellar objects, 302 of which are likely members of Serpens (16 Class I, 35 flat-spectrum, 235 Class II, and 16 Class III). From the continuum data, we derive disk dust masses and show that they systematically decline from Class I to flat-spectrum to Class II sources. Grouped by stellar evolutionary state, the disk mass distributions are similar to other young (<3 Myr) regions, indicating that the large-scale environment of a star-forming region does not strongly affect its overall disk dust mass properties. These comparisons between populations reinforce previous conclusions that disks in the Ophiuchus star-forming region have anomalously low masses at all evolutionary stages. Additionally, we find a single deeply embedded protostar that has not been documented elsewhere in the literature and, from the CO line data, 15 protostellar outflows, which we catalog here.

    more » « less

    Episodic accretion is a low-mass pre-main sequence phenomenon characterized by sudden outbursts of enhanced accretion. These objects are classified into two: protostars with elevated levels of accretion that lasts for decades or more, called FUors, and protostars with shorter and repetitive bursts, called EXors. HBC 494 is a FUor object embedded in the Orion Molecular Cloud. Earlier Atacama Large (sub-)Millimeter Array (ALMA) continuum observations showed an asymmetry in the disc at 0${_{.}^{\prime\prime}}$2 resolution. Here, we present follow-up observations at ∼0${_{.}^{\prime\prime}}$03, resolving the system into two components: HBC 494 N (primary) and HBC 494 S (secondary). No circumbinary disc was detected. Both discs are resolved with a projected separation of ∼0${_{.}^{\prime\prime}}$18 (75 au). Their projected dimensions are 84 ± 1.8 × 66.9 ± 1.5 mas for HBC 494 N and 64.6 ± 2.5 × 46.0 ± 1.9 mas for HBC 494 S. The discs are almost aligned and with similar inclinations. The observations show that the primary is ∼5 times brighter/more massive and ∼2 times bigger than the secondary. We notice that the northern component has a similar mass to the FUors, while the southern has to EXors. The HBC 494 discs show individual sizes that are smaller than single eruptive YSOs. In this work, we also report 12CO, 13CO, and C18O molecular line observations. At large scale, the 12CO emission shows bipolar outflows, while the 13CO and C18O maps show a rotating and infalling envelope around the system. At a smaller scale, the 12CO and 13CO moment zero maps show cavities within the continuum discs’ area, which may indicate continuum over-subtraction or slow-moving jets and chemical destruction along the line of sight.

    more » « less
  6. Abstract We present an overview of the Large Program, “Early Planet Formation in Embedded Disks (eDisk),” conducted with the Atacama Large Millimeter/submillimeter Array (ALMA). The ubiquitous detections of substructures, particularly rings and gaps, in protoplanetary disks around T Tauri stars raise the possibility that at least some planet formation may have already started during the embedded stages of star formation. In order to address exactly how and when planet formation is initiated, the program focuses on searching for substructures in disks around 12 Class 0 and 7 Class I protostars in nearby (<200 pc) star-forming regions through 1.3 mm continuum observations at a resolution of ∼7 au (0.″04). The initial results show that the continuum emission, mostly arising from dust disks around the sample protostars, has relatively few distinctive substructures, such as rings and spirals, in marked contrast to Class II disks. The dramatic difference may suggest that substructures quickly develop in disks when the systems evolve from protostars to Class II sources, or alternatively that high optical depth of the continuum emission could obscure internal structures. Kinematic information obtained through CO isotopologue lines and other lines reveals the presence of Keplerian disks around protostars, providing us with crucial physical parameters, in particular, the dynamical mass of the central protostars. We describe the background of the eDisk program, the sample selection and their ALMA observations, and the data reduction, and we also highlight representative first-look results. 
    more » « less
  7. Abstract

    We have observed the Class 0/I protostellar system Ced110 IRS4 at an angular resolution of 0.″05 (∼10 au) as part of the Atacama Large Millimeter/submillimeter Array large program, Early Planet Formation in Embedded Disks. The 1.3 mm dust continuum emission reveals that Ced110 IRS4 is a binary system with a projected separation of ∼250 au. The continuum emissions associated with the main source and its companion, named Ced110 IRS4A and IRS4B, respectively, exhibit disk-like shapes and likely arise from dust disks around the protostars. The continuum emission of Ced110 IRS4A has a radius of ∼110 au (∼0.″6) and shows bumps along its major axis with an asymmetry. The bumps can be interpreted as a shallow, ring-like structure at a radius of ∼40 au (∼0.″2) in the continuum emission, as demonstrated from two-dimensional intensity distribution models. A rotation curve analysis on the C18O and13COJ= 2–1 lines reveals the presence of a Keplerian disk within a radius of 120 au around Ced110 IRS4A, which supports the interpretation that the dust continuum emission arises from a disk. The ring-like structure in the dust continuum emission might indicate a possible annular substructure in the surface density of the embedded disk, although the possibility that it is an apparent structure due to the optically thick continuum emission cannot be ruled out.

    more » « less
  8. Abstract We present high-resolution Karl G. Jansky Very Large Array (VLA) observations of the protostar L1527 IRS at 7 mm, 1.3 cm, and 2 cm wavelengths. We detect the edge-on dust disk at all three wavelengths and find that it is asymmetric, with the southern side of the disk brighter than the northern side. We confirm this asymmetry through analytic modeling and also find that the disk is flared at 7 mm. We test the data against models including gap features in the intensity profile, and though we cannot rule such models out, they do not provide a statistically significant improvement in the quality of fit to the data. From these fits, we can, however, place constraints on allowed properties of any gaps that could be present in the true, underlying intensity profile. The physical nature of the asymmetry is difficult to associate with physical features owing to the edge-on nature of the disk, but it could be related to spiral arms or asymmetries seen in other imaging of more face-on disks. 
    more » « less