skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Williams, Lauren K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Consider a lattice of n sites arranged around a ring, with the $n$ sites occupied by particles of weights $\{1,2,\ldots ,n\}$; the possible arrangements of particles in sites thus correspond to the $n!$ permutations in $S_n$. The inhomogeneous totally asymmetric simple exclusion process (or TASEP) is a Markov chain on $S_n$, in which two adjacent particles of weights $i<j$ swap places at rate $x_i - y_{n+1-j}$ if the particle of weight $j$ is to the right of the particle of weight $i$. (Otherwise, nothing happens.) When $y_i=0$ for all $i$, the stationary distribution was conjecturally linked to Schubert polynomials [18], and explicit formulas for steady state probabilities were subsequently given in terms of multiline queues [4, 5]. In the case of general $y_i$, Cantini [7] showed that $n$ of the $n!$ states have probabilities proportional to double Schubert polynomials. In this paper, we introduce the class of evil-avoiding permutations, which are the permutations avoiding the patterns $2413, 4132, 4213,$ and $3214$. We show that there are $\frac {(2+\sqrt {2})^{n-1}+(2-\sqrt {2})^{n-1}}{2}$ evil-avoiding permutations in $S_n$, and for each evil-avoiding permutation $w$, we give an explicit formula for the steady state probability $\psi _w$ as a product of double Schubert polynomials. (Conjecturally, all other probabilities are proportional to a positive sum of at least two Schubert polynomials.) When $y_i=0$ for all $i$, we give multiline queue formulas for the $\textbf {z}$-deformed steady state probabilities and use this to prove the monomial factor conjecture from [18]. Finally, we show that the Schubert polynomials arising in our formulas are flagged Schur functions, and we give a bijection in this case between multiline queues and semistandard Young tableaux.

     
    more » « less
  2. null (Ed.)