skip to main content


Search for: All records

Creators/Authors contains: "Williams, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Electron-Ion Collider (EIC), a state-of-the-art facility for studying the strong force, is expected to begin commissioning its first experiments in 2028. This is an opportune time for artificial intelligence (AI) to be included from the start at this facility and in all phases that lead up to the experiments. The second annual workshop organized by the AI4EIC working group, which recently took place, centered on exploring all current and prospective application areas of AI for the EIC. This workshop is not only beneficial for the EIC, but also provides valuable insights for the newly established ePIC collaboration at EIC. This paper summarizes the different activities and R&D projects covered across the sessions of the workshop and provides an overview of the goals, approaches and strategies regarding AI/ML in the EIC community, as well as cutting-edge techniques currently studied in other experiments.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract We report the growth of α -Ga 2 O 3 on m -plane α -Al 2 O 3 by conventional plasma-assisted molecular-beam epitaxy and In-mediated metal–oxide-catalyzed epitaxy (MOCATAXY). We report a growth rate diagram for α -Ga 2 O 3 ( 10 1 ¯ 0 ), and observe (i) a growth rate increase, (ii) an expanded growth window, and (iii) reduced out-of-lane mosaic spread when MOCATAXY is employed for the growth of α -Ga 2 O 3 . Through the use of In-mediated catalysis, growth rates over 0.2 μ m h −1 and rocking curves with full width at half maxima of Δ ω ≈ 0.45° are achieved. Faceting is observed along the α -Ga 2 O 3 film surface and explored through scanning transmission electron microscopy. 
    more » « less
  3. Abstract

    The broad physics reach of the LUX-ZEPLIN (LZ) experiment covers rare phenomena beyond the direct detection of dark matter. We report precise measurements of the extremely rare decay of124Xe through the process of two-neutrino double electron capture, utilizing a 1.39 kg × yr isotopic exposure from the first LZ science run. A half-life ofT1/22ν2EC=(1.09±0.14stat±0.05sys)×1022yris observed with a statistical significance of 8.3σ, in agreement with literature. First empirical measurements of the KK capture fraction relative to other K-shell modes were conducted, and demonstrate consistency with respect to recent signal models at the 1.4σlevel.

     
    more » « less
  4. ABSTRACT

    We report the spectroscopic follow-up of 175 lensed quasar candidates selected using Gaia Data Release 2 observations following Paper III of this series. Systems include 86 confirmed lensed quasars and a further 17 likely lensed quasars based on imaging and/or similar spectra. We also confirm 11 projected quasar pairs and 11 physical quasar pairs, while 25 systems are left as unclassified quasar pairs – pairs of quasars at the same redshift, which could be either distinct quasars or potential lensed quasars. Especially interesting objects include eight quadruply imaged quasars of which two have BAL sources, an apparent triple, and a doubly lensed LoBaL quasar. The source redshifts and image separations of these new lenses range between 0.65–3.59 and 0.78–6.23 arcsec, respectively. We compare the known population of lensed quasars to an updated mock catalogue at image separations between 1 and 4 arcsec, showing a very good match at z < 1.5. At z > 1.5, only 47 per cent of the predicted number are known, with 56 per cent of these missing lenses at image separations below 1.5 arcsec. The missing higher redshift, small-separation systems will have fainter lensing galaxies, and are partially explained by the unclassified quasar pairs and likely lenses presented in this work, which require deeper imaging. Of the 11 new reported projected quasar pairs, 5 have impact parameters below 10 kpc, almost tripling the number of such systems, which can probe the innermost regions of quasar host galaxies through absorption studies. We also report four new lensed galaxies discovered through our searches, with source redshifts ranging from 0.62 to 2.79.

     
    more » « less
  5. The importance of alternative methods for measuring the Hubble constant, such as time-delay cosmography, is highlighted by the recent Hubble tension. It is paramount to thoroughly investigate and rule out systematic biases in all measurement methods before we can accept new physics as the source of this tension. In this study, we perform a check for systematic biases in the lens modelling procedure of time-delay cosmography by comparing independent and blind time-delay predictions of the system WGD 2038−4008 from two teams using two different software programs:GLEEandLENSTRONOMY. The predicted time delays from the two teams incorporate the stellar kinematics of the deflector and the external convergence from line-of-sight structures. The un-blinded time-delay predictions from the two teams agree within 1.2σ, implying that once the time delay is measured the inferred Hubble constant will also be mutually consistent. However, there is a ∼4σdiscrepancy between the power-law model slope and external shear, which is a significant discrepancy at the level of lens models before the stellar kinematics and the external convergence are incorporated. We identify the difference in the reconstructed point spread function (PSF) to be the source of this discrepancy. When the same reconstructed PSF was used by both teams, we achieved excellent agreement, within ∼0.6σ, indicating that potential systematics stemming from source reconstruction algorithms and investigator choices are well under control. We recommend that future studies supersample the PSF as needed and marginalize over multiple algorithms or realizations for the PSF reconstruction to mitigate the systematics associated with the PSF. A future study will measure the time delays of the system WGD 2038−4008 and infer the Hubble constant based on our mass models.

     
    more » « less