skip to main content

Search for: All records

Creators/Authors contains: "Williams, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2024
  2. Abstract

    Migration is an adaptive life‐history strategy across taxa that helps individuals maximise fitness by obtaining forage and avoiding predation risk. The mechanisms driving migratory changes are poorly understood, and links between migratory behaviour, space use, and demographic consequences are rare.

    Here, we use a nearly 20‐year record of individual‐based monitoring of a large herbivore, elk (Cervus canadensis) to test hypotheses for changing patterns of migration in and adjacent to a large protected area in Banff National Park (BNP), Canada.

    We test whether bottom‐up (forage quality) or top‐down (predation risk) factors explained trends in (i) the proportion of individuals using 5 different migratory tactics, (ii) differences in survival rates of migratory tactics during migration and whilst on summer ranges, (iii) cause‐specific mortality by wolves and grizzly bears, and (iv) population abundance.

    We found dramatic shifts in migration consistent with behavioural plasticity in individual choice of annual migratory routes. Shifts were inconsistent with exposure to the bottom‐up benefits of migration. Instead, exposure to landscape gradients in predation risk caused by exploitation outside the protected area drove migratory shifts. Carnivore exploitation outside the protected area led to higher survival rates for female elk remaining resident or migrating outside the protected area.

    Cause‐specific mortality aligned with exposure to predation risk along migratory routes and summer ranges. Wolf predation risk was higher on migratory routes than summer ranges of montane‐migrant tactics, but wolf predation risk traded‐off with heightened risk from grizzly bears on summer ranges. A novel eastern migrant tactic emerged following a large forest fire that enhanced forage in an area with lower predation risk outside of the protected area.

    The changes in migratory behaviour translated to population abundance, where abundance of the montane‐migratory tactics declined over time. The presence of diverse migratory life histories maintained a higher total population abundance than would have been the case with only one migratory tactic in the population.

    Our study demonstrates the complex ways in which migratory populations change over time through behavioural plasticity and associated demographic consequences because of individuals balancing predation risk and forage trade‐offs.

    more » « less
  3. null (Ed.)
    Displacement estimates along the Atacama fault system (AFS), a crustal-scale sinistral structure that accommodated oblique convergence in the Mesozoic Coastal Cordillera arc, vary widely due to a lack of piercing points. We map the distribution of plutons and mylonitic deformation along the northern c. 70 km of the El Salado segment and use U–Pb geochronology to establish the slip history of the AFS. Along the eastern branch, mylonitic fabrics associated with the synkinematic c. 134–132 Ma Cerro del Pingo Complex are separated by 34–38 km, and mylonites associated with a synkinematic c. 120–119 Ma tonalite are separated by 20.5–26 km. We interpret leucocratic intrusions to be separated across the western branch by c. 16–20 km, giving a total slip magnitude of c. 54  ±  6 km across the El Salado segment. Kinematic indicators consistently record sinistral shear, and zircon (U–Th)/He data suggest dip-slip motion was insignificant. Displacement occurred between c. 133–110 Ma at a slip rate of c. 2.1–2.6 km Myr –1 . This slip rate is low compared to modern intra-arc strike-slip faults, suggesting (1) the majority of lateral slip was accommodated along the slab interface or distributed through the forearc or (2) plate convergence rates/obliquity were significantly lower than previously modeled. Supplementary material: Full U-Pb, (U-Th)/He, petrographic, and structural data with locations is available at Thematic collection: This article is part of the Isotopic dating of deformation collection available at: 
    more » « less
  4. ABSTRACT Photometric and spectroscopic data for two Low Luminosity Type IIP Supernovae (LL SNe IIP) 2020cxd and 2021aai are presented. SN 2020cxd was discovered 2 d after explosion at an absolute magnitude of Mr  = −14.02 ± 0.21 mag, subsequently settling on a plateau which lasts for ∼120 d. Through the luminosity of the late light curve tail, we infer a synthesized 56Ni mass of (1.8 ± 0.5) × 10−3 M⊙. During the early evolutionary phases, optical spectra show a blue continuum ($T\, \gt $8000 K) with broad Balmer lines displaying a P Cygni profile, while at later phases, Ca ii, Fe ii, Sc ii, and Ba ii lines dominate the spectra. Hydrodynamical modelling of the observables yields $R\, \simeq$ 575 R⊙ for the progenitor star, with Mej  = 7.5 M⊙ and $E\, \simeq$ 0.097 foe emitted during the explosion. This low-energy event originating from a low-mass progenitor star is compatible with both the explosion of a red supergiant (RSG) star and with an Electron Capture Supernova arising from a super asymptotic giant branch star. SN 2021aai reaches a maximum luminosity of Mr  = −16.57 ± 0.23 mag (correcting for AV = 1.92 mag), at the end of its remarkably long plateau (∼140 d). The estimated 56Ni mass is (1.4 ± 0.5) × 10−2 M⊙. The expansion velocities are compatible with those of other LL SNe IIP (few 103 km s−1). The physical parameters obtained through hydrodynamical modelling are $R\, \simeq$ 575 R⊙, Mej = 15.5 M⊙, and E = 0.4 foe. SN 2021aai is therefore interpreted as the explosion of an RSG, with properties that bridge the class of LL SNe IIP with standard SN IIP events. 
    more » « less