skip to main content

Search for: All records

Creators/Authors contains: "Williamson, Craig E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2024
  2. Free, publicly-accessible full text available March 1, 2024
  3. Abstract

    Reductions in ice cover duration and earlier ice breakup are two of the most prevalent responses to climate warming in lakes in recent decades. In dimictic lakes, the subsequent periods of spring mixing and summer stratification are both likely to change in response to these phenological changes in ice cover. Here, we used a modeling approach to simulate the effect of changes in latitude on long‐term trends in duration of ice cover, spring mixing, and summer stratification by “moving” a well‐studied lake across a range of latitudes in North America (35.2°N to 65.7°N). We found a changepoint relationship between the timing of ice breakup vs. spring mixing duration on 09 May. When ice breakup occurred before 09 May, which routinely occurred at latitudes < 47°N, spring mixing was longer and more variable; when ice breakup occurred after 09 May at latitudes > 47°N, spring mixing averaged 1 day with low variability. In contrast, the duration of summer stratification showed a relatively slower rate of increase when ice breakup occurred before 09 May (< 47°N) compared to a 109% faster rate of increase when ice breakup was after 09 May (> 47°N). Projected earlier ice breakup can result in important nonlinear changes in themore »relative duration of spring mixing and summer stratification, which can lead to mixing regime shifts that influence the severity of oxygen depletion differentially across latitudes.

    « less
  4. null (Ed.)
    Synopsis Information, energy, and matter are fundamental properties of all levels of biological organization, and life emerges from the continuous flux of matter, energy, and information. This perspective piece defines and explains each of the three pillars of this nexus. We propose that a quantitative characterization of the complex interconversions between matter, energy, and information that comprise this nexus will help us derive biological insights that connect phenomena across different levels of biological organization. We articulate examples from multiple biological scales that highlight how this nexus approach leads to a more complete understanding of the biological system. Metrics of energy, information, and matter can provide a common currency that helps link phenomena across levels of biological organization. The propagation of energy and information through levels of biological organization can result in emergent properties and system-wide changes that impact other hierarchical levels. Deeper consideration of measured imbalances in energy, information, and matter can help researchers identify key factors that influence system function at one scale, highlighting avenues to link phenomena across levels of biological organization and develop predictive models of biological systems.
  5. Human-driven environmental change underlies recent changes in water clarity in many of the world’s great lakes, yet our understanding of the consequences of these changes on the fish and fisheries they support remains incomplete. Herein, we offer a framework to organize current knowledge, guide future research, and help fisheries managers understand how water clarity can affect their valued populations. Emphasizing Laurentian Great Lakes findings where possible, we describe how changing water clarity can directly affect fish populations and communities by altering exposure to ultraviolet radiation, foraging success, predation risk, reproductive behavior, or territoriality. We also discuss how changing water clarity can affect fisheries harvest and assessment through effects on fisher behavior and sampling efficiency (i.e., catchability). Finally, we discuss whether changing water clarity can affect understudied aspects of fishery performance, including economic and community benefits. We conclude by identifying generalized predictions and discuss their implications for priority research questions for the Laurentian Great Lakes. Even though the motivation for this work was regional, the breadth of the review and generality of the framework are readily transferable to other freshwater and marine habitats.
  6. Loiselle, Steven Arthur (Ed.)
  7. Abstract

    Wildfire smoke often covers areas larger than the burned area, yet the impacts of smoke on nearby aquatic ecosystems are understudied. In the summer of 2018, wildfire smoke covered Castle Lake (California, USA) for 55 days. We quantified the influence of smoke on the lake by comparing the physics, chemistry, productivity, and animal ecology in the prior four years (2014–2017) to the smoke year (2018). Smoke reduced incident ultraviolet-B (UV-B) radiation by 31% and photosynthetically active radiation (PAR) by 11%. Similarly, underwater UV-B and PAR decreased by 65 and 44%, respectively, and lake heat content decreased by 7%. While the nutrient limitation of primary production did not change, shallow production in the offshore habitat increased by 109%, likely due to a release from photoinhibition. In contrast, deep-water, primary production decreased and the deep-water peak in chlorophylladid not develop, likely due to reduced PAR. Despite the structural changes in primary production, light, and temperature, we observed little significant change in zooplankton biomass, community composition, or migration pattern. Trout were absent from the littoral-benthic habitat during the smoke period. The duration and intensity of smoke influences light regimes, heat content, and productivity, with differing responses to consumers.