skip to main content

Search for: All records

Creators/Authors contains: "Wilson, Alex C. C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Like all organisms, aphids, plant sap-sucking insects that house a bacterial endosymbiont calledBuchnera, are members of a species interaction network. Ecological interactions across such networks can result in phenotypic change in network members mediated by molecular signals, like microRNAs. Here, we interrogated small RNA data from the aphid,Myzus persicae, to determine the source of reads that did not map to the aphid orBuchneragenomes. Our analysis revealed that the pattern was largely explained by reads that mapped to the host plant,Brassica oleracea, and a facultative symbiont,Regiella. To start elucidating the function of plant small RNA in aphid gut, we annotated 213 uniqueB. oleraceamiRNAs; 32/213 were present in aphid gut as mature and star miRNAs. Next, we predicted targets in theB. oleraceaandM. persicaegenomes for these 32 plant miRNAs. We found that plant targets were enriched for genes associated with transcription, while the distribution of targets in the aphid genome was similar to the functional distribution of all genes in the aphid genome. We discuss the potential of plant miRNAs to regulate aphid gene expression and the mechanisms involved in processing, export and uptake of plant miRNAs by aphids.

  2. Abstract

    Although many insects are associated with obligate bacterial endosymbionts, the mechanisms by which these host/endosymbiont associations are regulated remain mysterious. While microRNAs (miRNAs) have been recently identified as regulators of host/microbe interactions, including host/pathogen and host/facultative endosymbiont interactions, the role miRNAs may play in mediating host/obligate endosymbiont interactions is virtually unknown. Here, we identified conserved miRNAs that potentially mediate symbiotic interactions between aphids and their obligate endosymbiont,Buchnera aphidicola. Using smallRNAsequence data fromMyzus persicaeandAcyrthosiphon pisum, we annotated 93M. persicaeand 89A. pisummiRNAs, among which 69 were shared. We found 14 miRNAs that were either highly expressed in aphid bacteriome, theBuchnera‐housing tissue, or differentially expressed in bacteriome vs. gut, a non‐Buchnera‐housing tissue. Strikingly, 10 of these 14 miRNAs have been implicated previously in other host/microbe interaction studies. Investigating the interaction networks of these miRNAs using a custom computational pipeline, we identified 103 miRNA::mRNAinteractions shared betweenM. persicaeandA. pisum. Functional annotation of the sharedmRNAtargets revealed only two over‐represented cluster of orthologous group categories: amino acid transport and metabolism, and signal transduction mechanisms. Our work supports a role for miRNAs in mediating host/symbiont interactions between aphids and their obligate endosymbiontBuchnera. In addition, our results highlight the probable importancemore »of signal transduction mechanisms to host/endosymbiont coevolution.

    « less