skip to main content


Search for: All records

Creators/Authors contains: "Wilson, Andrew E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. SRAM-based FPGAs are frequently used for critical functions in space applications. Soft processors implemented within these FPGAs are often needed to satisfy the mission requirements. The open ISA, RISC-V, has allowed for the development of a wide range of open source processors. Like all SRAM-based FPGA digital designs, these soft processors are susceptible to SEUs. This paper presents an investigation of the performances and relative SEU sensitivity of a selection of newly available open source RISC-V processors. Utilizing dynamic partial reconfiguration, this novel automatic test equipment rapidly deployed different implementations and evaluated SEU sensitivity through fault injection. Using BYU’s new SpyDrNet tools, fine-grain TMR was also applied to each processor with results ranging from a 20× to 500× reduction in sensitivity. 
    more » « less
  2. null (Ed.)
  3. FPGAs are an excellent target for real-time video processing as they provide large amounts of low-level parallelism, low latency, and high bandwidth. However, creating real-time video processing systems on an FPGA is tedious and requires significant effort and low-level digital design skills. This paper presents a technique for creating complex real-time video processing pipelines relatively quickly and easily using partial reconfiguration (PR). A static FPGA system is created that provides a template for a variety of partially reconfigurable video processing cores. A library of video filters has been created that can be inserted into the template regions. At run-time, the user can select the topology of video cores and customize these cores to create complex and unique video pipelines without any understanding of low-level FPGA details. This paper demonstrates this technique with a library of 11 partial reconfigurable regions and 16 video processing cores operating on the Xilinx PYNQ system. 
    more » « less