skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wilson, Calum Patrick"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. We present gridded surface air quality datasets over South Korea for three key species – ozone (O3), carbon monoxide (CO), and nitrogen oxides (NOx) during the timeframe of the Korea–US Air Quality (KORUS–AQ) mission (May–June 2016). The tenth degree hourly averaged abundances are constructed from the 300+ air quality network sites using inverse distance weighting with simple declustering. Cross–comparing the interpolated fields against the site data that was used to create them reveals high prediction skill for O3 (80 %) throughout South Korea, and moderate skill (60 %) for CO and NOx on average in densely observed regions after individual mean bias corrections. The gridded O3 and CO interpolations predict the NASA DC–8 observations in the planetary boundary layer (PBL) with high skill (80 %) in the Seoul Metropolitan Area (SMA) after subtracting the mean bias. DC–8 NOx observations were much less predictable on account of consistently negative vertical gradients within the PBL. Our gridded products capture the mean and variability of O3 throughout South Korea, and of CO and surface NOx in most site–dense urban centres (SMA, Cheongju, Gwangju, Daegu, Changwon, and Busan). 
    more » « less