skip to main content

Search for: All records

Creators/Authors contains: "Winemiller, Kirk O."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Understanding of community assembly has been improved by phylogenetic and trait‐based approaches, yet there is little consensus regarding the relative importance of alternative mechanisms and few studies have been done at large geographic and phylogenetic scales. Here, we use phylogenetic and trait dispersion approaches to determine the relative contribution of limiting similarity and environmental filtering to community assembly of stream fishes at an intercontinental scale. We sampled stream fishes from five zoogeographic regions. Analysis of traits associated with habitat use, feeding, or both resulted in more occurrences of trait underdispersion than overdispersion regardless of spatial scale or species pool. Our results suggest that environmental filtering and, to a lesser extent, species interactions were important mechanisms of community assembly for fishes inhabiting small, low‐gradient streams in all five regions. However, a large proportion of the trait dispersion values were no different from random. This suggests that stochastic factors or opposing assembly mechanisms also influenced stream fish assemblages and their trait dispersion patterns. Local assemblages tended to have lower functional diversity in microhabitats with high water velocity, shallow water depth, and homogeneous substrates lacking structural complexity, lending support for the stress‐dominance hypothesis. A high prevalence of functional underdispersion coupled with phylogenetic underdispersion could reflect phylogenetic niche conservatism and/or stabilizing selection. These findings imply that environmental filtering of stream fish assemblages is not only deterministic, but also influences assemblage structure in a fairly consistent manner worldwide.

    more » « less
  2. Arlinghaus, Robert (Ed.)
  3. Using the most comprehensive fish occurrence database, we evaluated the importance of ecological and historical drivers in diversity patterns of subdrainage basins across the Amazon system. Linear models reveal the influence of climatic conditions, habitat size and sub-basin isolation on species diversity. Unexpectedly, the species richness model also highlighted a negative upriver-downriver gradient, contrary to predictions of increasing richness at more downriver locations along fluvial gradients. This reverse gradient may be linked to the history of the Amazon drainage network, which, after isolation as western and eastern basins throughout the Miocene, only began flowing eastward 1–9 million years (Ma) ago. Our results suggest that the main center of fish diversity was located westward, with fish dispersal progressing eastward after the basins were united and the Amazon River assumed its modern course toward the Atlantic. This dispersal process seems not yet achieved, suggesting a recent formation of the current Amazon system. 
    more » « less
  4. Abstract

    Herbivorous ectothermic vertebrates are more diverse and abundant at lower latitudes. While thermal constraints may drive this pattern, its underlying cause remains unclear. We hypothesized that this constraint stems from an inability to meet the elevated phosphorus demands of bony vertebrates feeding on P‐poor plant material at cooler temperatures because low gross growth efficiency at warmer temperatures facilitates higher P ingestion rates. We predicted that dietary carbon:phosphorus (C:P) should exceed the threshold elemental ratio between carbon and P‐limited growth (TERC:P) for herbivores feeding at cooler temperatures, thereby limiting the range of herbivorous ectothermic vertebrates facing P‐limited growth.

    We tested this hypothesis using the Andean suckermouth catfishesAstroblepusandChaetostoma.Astroblepusare invertivores that inhabit relatively cool, high‐elevation streams whileChaetostomaare grazers that inhabit relatively warm, low‐elevation streams. We calculated TERC:Pfor each genus across its elevational range and compared these values to measured values of food quality over an elevational gradient in the Andes. We also broadly summarized measurements of TERC:Pacross diverse groups of fishes.

    Supporting our hypothesis, we found that dietary C:P was predicted to exceed the TERC:Pfor the grazerChaetostomanear the highest elevation where this genus has been recorded. Conversely, the TERC:Pfor the invertivoreAstroblepuswas consistently higher than that ofChaetostomaand thus its dietary C:P never approached the TERC:P. We found that, among all fishes, omnivores had higher average TERC:Pthan invertivores, and TERC:Pdid not vary with temperature.

    Our results suggest that, at least for Andean suckermouth catfishes, cool temperatures constrain herbivory at higher elevations. Increased gross growth efficiency at cooler temperatures evidently restricts the ability of P‐limited consumers to meet P demand. However, our survey of fish TERC:Pestimates suggests that some fishes are able to circumvent this constraint through behavioural and life‐history adaptations that reduce P demand or increase P use efficiency.

    The physiological trade‐offs underlying these functional shifts reveal that geographic dietary patterns can be predicted by stoichiometric theory, but variation in food quality and consumer traits that reduce P demand and/or increase P efficiency can create exceptions to these patterns.

    Aplain language summaryis available for this article.

    more » « less