skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Winey, Karen I."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Designing a functional surface that selectively adsorbs nanoparticles based on their size and shape is essential for developing an advanced adsorption-based, post-synthesis nanoparticle separation device. We demonstrate selective adsorption of larger nanoparticles from solution onto a polyelectrolyte brush by tuning the salt concentration. Specifically, a positively-charged polyelectrolyte brush is created by converting pyridine groups of poly(2-vinylpyridine) to n-methyl pyridinium groups using methyl iodide. The adsorption kinetics and thermodynamics of polyethylene glycol-grafted, negatively charged gold nanoparticles (diameters of 12 and 20 nm) were monitored as a function of salt concentration. In a salt-free solution, the polyelectrolyte brush adsorbs gold nanoparticles of both sizes. As the salinity increases, the areal number density of adsorbed nanoparticles monotonically decreases and becomes negligible at high salinity. Interestingly, there is an intermediate range of salt concentrations (i.e., 15 – 20 mM of NaCl) where the decrease in nanoparticle adsorption is more pronounced for smaller particles, leading to size-selective adsorption of the larger nanoparticles. As a further demonstration of selectivity, the polyelectrolyte brush is immersed in a binary mixture of 12-nm and 20-nm nanoparticles and found to selectively capture larger particles with ~ 90 % selectivity. In addition, the size distribution of as-synthesized gold nanoparticles, with an average diameter of 12 nm, was reduced by selectively removing larger particles by exposing the solution to polyelectrolyte brush surfaces. This study demonstrates the potential of a polyelectrolyte brush separation device to remove larger nanoparticles by controlling electrostatic interactions between polymer brushes and particles 
    more » « less
    Free, publicly-accessible full text available November 6, 2025
  2. This study examines nanoparticle diffusion in crowded polymer nanocomposites by diffusing small Al2O3 nanoparticles (NPs) in SiO2-loaded P2VP matrices. Time-of-flight secondary ion mass spectroscopy (ToF-SIMS) measures Al2O3 NP diffusion coefficients within a homogeneous PNC background of larger, immobile SiO2 NPs. By developing a geometric model for the average interparticle distance in a system with two NP sizes, we quantify nanocomposite confinement relative to the Al2O3 NP size with a bound layer. At low SiO2 concentrations, Al2O3 NP diffusion aligns with the neat polymer results. In more crowded nanocomposites with higher SiO2 concentrations where the interparticle distance approaches the size of the mobile Al2O3 NP, the 6.5 nm Al2O3 NPs diffuse faster than predicted by both core–shell and vehicular diffusion models. Relative to our previous studies of NPs diffusing into polymers, these findings demonstrate that the local environment in crowded systems significantly complicates NP diffusion behavior and the bound layer lifetimes. 
    more » « less
    Free, publicly-accessible full text available September 17, 2025
  3. Free, publicly-accessible full text available July 8, 2025
  4. We demonstrate enhanced Li+ transport through the selectively solvated ionic layers of a single-ion conducting polymer. The polymer is a precisely segmented ion-containing multiblock copolymers with well-defined Li+SO3– ionic layers between crystallized linear aliphatic 18-carbon blocks. X-ray scattering reveals that the dimethyl sulfoxide (DMSO) molecules selectively solvate the ionic layers without disrupting the crystallization of the polymer backbone. The amount of DMSO (∼21 wt %) calculated from the increased layer spacing is consistent with thermogravimetric analysis. The ionic conductivity through DMSO-solvated ionic layers is >104 times higher than in the dried state, indicating a significant enhancement of ion transport in the presence of this solvent. Dielectric relaxation spectroscopy (DRS) further elucidates the role of the structural relaxation time (τ) and the number of free Li+ (n) on the ionic conductivity (σ). Specifically, DRS reveals that the solvation of ionic domains with DMSO contributes to both accelerating the structural relaxation and the dissociation of ion pairs. This study is the initial demonstration that selective solvation is a viable design strategy to improve ionic conductivity in nanophase separated, single-ion conducting multiblock copolymers. 
    more » « less