- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Aliaga, Daniel (2)
-
Benes, Bedrich (2)
-
Firoze, Adnan (2)
-
Wingren, Cameron (2)
-
Yeh, Raymond (1)
-
Yeh, Raymond A. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present a novel approach to perform instance segmentation and counting for densely packed self-similar trees using a top-view RGB image sequence. We propose a solution that leverages pixel content, shape, and self-occlusion. First, we perform an initial over-segmentation of the image sequence and aggregate structural characteristics into a contour graph with temporal information incorporated. Second, using a graph convolutional network and its inherent local messaging passing abilities, we merge adjacent tree crown patches into a final set of tree crowns. Per various studies and comparisons, our method is superior to all prior methods and results in high-accuracy instance segmentation and counting despite the trees being tightly packed. Finally, we provide various forest image sequence datasets suitable for subsequent benchmarking and evaluation captured at different altitudes and leaf conditions.more » « less
-
Firoze, Adnan; Wingren, Cameron; Yeh, Raymond A.; Benes, Bedrich; Aliaga, Daniel (, IEEE)We present a novel approach to perform instance segmentation and counting for densely packed self-similar trees using a top-view RGB image sequence. We propose a solution that leverages pixel content, shape, and self-occlusion. First, we perform an initial over-segmentation of the image sequence and aggregate structural characteristics into a contour graph with temporal information incorporated. Second, using a graph convolutional network and its inherent local messaging passing abilities, we merge adjacent tree crown patches into a final set of tree crowns. Per various studies and comparisons, our method is superior to all prior methods and results in high-accuracy instance segmentation and counting despite the trees being tightly packed. Finally, we provide various forest image sequence datasets suitable for subsequent benchmarking and evaluation captured at different altitudes and leaf conditions.more » « less