Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Permafrost microbial research has flourished in the past decades, due in part to improvements in sampling and molecular techniques, but also the increased focus on the permafrost greenhouse gas feedback to climate change and other ecological processes in high latitude and alpine permafrost soils. Permafrost microorganisms are adapted to these extreme environments and remain active at low temperatures and when resources are limited. They are also an important component of global elemental cycles as they regulate organic matter turnover and greenhouse gas production, particularly as permafrost thaws. Here we review the permafrost microbiology literature coupled with an exploration of its historical aspects, with a particular focus on a new understanding advanced by molecular biology techniques. We further identify knowledge gaps and ways forward to improve our understanding of microbial contributions to ecosystem biogeochemistry of permafrost‐affected systems.more » « lessFree, publicly-accessible full text available January 13, 2026
-
Previous work constructed Fleming–Viot-type measure-valued diffusions (and diffusions on a space of interval partitions of the unit interval [0,1]) that are stationary with respect to the Poisson–Dirichlet random measures with parameters \alpha \in (0,1) and \theta > -\alpha. In this paper, we complete the proof that these processes resolve a conjecture by Feng and Sun [Probab. Theory Related Fields 148 (2010), pp. 501–525] by showing that the processes of ranked atom sizes (or of ranked interval lengths) of these diffusions are members of a two-parameter family of diffusions introduced by Petrov [Funct. Anal. Appl. 43 (2009), pp. 279–296], extending a model by Ethier and Kurtz [Adv. in Appl. Probab. 13 (1981), pp. 429–452] in the case \alpha =0.more » « less
-
Abstract Nitrogen regulates multiple aspects of the permafrost climate feedback, including plant growth, organic matter decomposition, and the production of the potent greenhouse gas nitrous oxide. Despite its importance, current estimates of permafrost nitrogen are highly uncertain. Here, we compiled a dataset of >2000 samples to quantify nitrogen stocks in the Yedoma domain, a region with organic-rich permafrost that contains ~25% of all permafrost carbon. We estimate that the Yedoma domain contains 41.2 gigatons of nitrogen down to ~20 metre for the deepest unit, which increases the previous estimate for the entire permafrost zone by ~46%. Approximately 90% of this nitrogen (37 gigatons) is stored in permafrost and therefore currently immobile and frozen. Here, we show that of this amount, ¾ is stored >3 metre depth, but if partially mobilised by thaw, this large nitrogen pool could have continental-scale consequences for soil and aquatic biogeochemistry and global-scale consequences for the permafrost feedback.more » « less
-
Consider the Aldous Markov chain on the space of rooted binary trees withnlabeled leaves in which at each transition a uniform random leaf is deleted and reattached to a uniform random edge. Now, fix 1 ≤ k<nand project the leaf mass onto the subtree spanned by the firstkleaves. This yields a binary tree with edge weights that we call a “decoratedk‐tree with total massn.” We introduce label swapping dynamics for the Aldous chain so that, when it runs in stationarity, the decoratedk‐trees evolve as Markov chains themselves, and are projectively consistent overk. The construction of projectively consistent chains is a crucial step in the construction of the Aldous diffusion on continuum trees by the present authors, which is then→∞continuum analog of the Aldous chain and will be taken up elsewhere.more » « less
-
Abstract The physical and chemical changes that accompany permafrost thaw directly influence the microbial communities that mediate the decomposition of formerly frozen organic matter, leading to uncertainty in permafrost–climate feedbacks. Although changes to microbial metabolism and community structure are documented following thaw, the generality of post‐thaw assembly patterns across permafrost soils of the world remains uncertain, limiting our ability to predict biogeochemistry and microbial community responses to climate change. Based on our review of the Arctic microbiome, permafrost microbiology, and community ecology, we propose thatAssembly Theoryprovides a framework to better understand thaw‐mediated microbiome changes and the implications for community function and climate feedbacks. This framework posits that the prevalence of deterministic or stochastic processes indicates whether the community is well‐suited to thrive in changing environmental conditions. We predict that on a short timescale and following high‐disturbance thaw (e.g., thermokarst), stochasticity dominates post‐thaw microbiome assembly, suggesting that functional predictions will be aided by detailed information about the microbiome. At a longer timescale and lower‐intensity disturbance (e.g., active layer deepening), deterministic processes likely dominate, making environmental parameters sufficient for predicting function. We propose that the contribution of stochastic and deterministic processes to post‐thaw microbiome assembly depends on the characteristics of the thaw disturbance, as well as characteristics of the microbial community, such as the ecological and phylogenetic breadth of functional guilds, their functional redundancy, and biotic interactions. These propagate across space and time, potentially providing a means for predicting the microbial forcing of greenhouse gas feedbacks to global climate change.more » « less
An official website of the United States government
