In response to a warming planet with earlier springs, migratory animals are adjusting the timing of essential life stages. Although these adjustments may be essential for keeping pace with resource phenology, they may prove insufficient, as evidenced by population declines in many species. However, even when species can match the tempo of climate change, other consequences may emerge when exposed to novel conditions earlier in the year. Here, using three long-term datasets on bird reproduction, daily insect availability, and weather, we investigated the complex mechanisms affecting reproductive success in an aerial insectivore, the tree swallow (
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Tachycineta bicolor ). By examining breeding records over nearly half a century, we discovered that tree swallows have continuously advanced their egg laying by ∼3 d per decade. However, earlier-hatching offspring are now exposed to inclement weather events twice as often as they were in the 1970s. Our long-term daily insect biomass dataset shows no long-term trends over 25 y but precipitous drops in flying insect numbers on days with low ambient temperatures. Insect availability has a considerable impact on chick survival: Even a single inclement weather event can reduce offspring survival by >50%. Our results highlight the multifaceted threats that climate change poses on migrating species. The decoupling between cold snap occurrence and generally warming spring temperatures can affect reproductive success and threaten long-term persistence of populations. Understanding the exact mechanisms that endanger aerial insectivores is especially timely because this guild is experiencing the steepest and most widespread declines across North America and Europe. -
Summary Bird species’ migratory patterns have typically been studied through individual observations and historical records. In recent years, the eBird citizen science project, which solicits observations from thousands of bird watchers around the world, has opened the door for a data-driven approach to understanding the large-scale geographical movements. Here, we focus on the North American tree swallow (Tachycineta bicolor) occurrence patterns throughout the eastern USA. Migratory departure dates for this species are widely believed by both ornithologists and casual observers to vary substantially across years, but the reasons for this are largely unknown. In this work, we present evidence that maximum daily temperature is predictive of tree swallow occurrence. Because it is generally understood that species occurrence is a function of many complex, high order interactions between ecological covariates, we utilize the flexible modelling approach that is offered by random forests. Making use of recent asymptotic results, we provide formal hypothesis tests for predictive significance of various covariates and also develop and implement a permutation-based approach for formally assessing interannual variations by treating the prediction surfaces that are generated by random forests as functional data. Each of these tests suggest that maximum daily temperature is important in predicting migration patterns.
-
Abstract Conditions during early life can have dramatic effects on adult characteristics and fitness. However, we still know little about the mechanisms that mediate these relationships. Telomere shortening is one possibility. Telomeres are long sequences of DNA that protect the ends of chromosomes. They shorten naturally throughout an individual's life, and individuals with short telomeres tend to have poorer health and reduced survival. Given this connection between telomere length (TL) and fitness, natural selection should favor individuals that are able to retain longer telomeres for a greater portion of their lives. However, the ability of natural selection to act on TL depends on the extent to which genetic and environmental factors influence TL. In this study, we experimentally enlarged broods of Tree Swallows (
Tachycineta bicolor ) to test the effects of demanding early‐life conditions on TL, while simultaneously cross‐fostering chicks to estimate heritable genetic influences on TL. In addition, we estimated the effects of parental age and chick sex on chick TL. We found that TL is highly heritable in Tree Swallow chicks, and that the maternal genetic basis for TL is stronger than is the paternal genetic basis. In contrast, the experimental manipulation of brood size had only a weak effect on chick TL, suggesting that the role of environmental factors in influencing TL early in life is limited. There was no effect of chick sex or parental age on chick TL. While these results are consistent with those reported in some studies, they are in conflict with others. These disparate conclusions might be attributable to the inherent complexity of telomere dynamics playing out differently in different populations or to study‐specific variation in the age at which subjects were measured. -
Abstract Extra‐pair paternity (EPP) is a widespread phenomenon in birds. Researchers have long hypothesized that EPP must confer a fitness advantage to extra‐pair offspring (EPO), but empirical support for this hypothesis is definitively mixed. This could be because genetic benefits of EPP only exist in a subset of environmental contexts to which a population is exposed. From 2013 to 2015, we manipulated perceived predator density in a population of tree swallows (
Tachycineta bicolor ) breeding in New York to see whether fitness outcomes of extra‐pair and within‐pair offspring (WPO) varied with predation risk. In nests that had been exposed to predators, EPO were larger, longer‐winged and heavier than WPO. In nonpredator nests, WPO tended to be larger, longer‐winged and heavier than EPO, though the effect was nonsignificant. We found no differences in age, morphology or stress physiology between extra‐pair and within‐pair sires from the same nest, suggesting that additive genetic benefits cannot fully explain the differences in nestling size that we observed. The lack of an effect of predator exposure on survival or glucocorticoid stress physiology of EPO and WPO further suggests that observed size differences do not reflect more general variation in intrinsic genetic quality. Instead, we suggest that size differences may have arisen through differential investment into EPO and WPO by females, perhaps because EPO and WPO represent different reproductive strategies, with each type of nestling conferring a fitness advantage in specific ecological contexts. -
Abstract Early‐life conditions can have substantial effects on the ways animals respond to stressors as adults. In particular, thermal conditions during development affect juveniles' responses to stressors, and there is evidence that these effects may extend into adulthood. However, these effects remain poorly understood, especially in free‐living organisms.
We test the prediction that ambient temperatures during laying, embryonic development and nestling development affect the hormonal mediators of the response to stressors in adults. To do so, we use a long‐term dataset of tree swallows (
Tachycineta bicolor ) with records from both natal development and adult breeding.We found a strong, negative relationship between ambient temperature during early development (incubation) and an individual's corticosterone (CORT) response to stress later in life (while incubating her own young). Thermal conditions during other stages of natal development also showed a weak relationship with baseline CORT during provisioning.
In a post hoc analysis, we found no evidence that ambient temperature during development differentially influenced the survival and recruitment of juveniles with different CORT phenotypes.
Our results show that thermal conditions during development can have long‐term effects on how individuals respond to stressors.
-
Abstract Aquatic and terrestrial ecosystems are connected through reciprocal fluxes of energy and nutrients that can subsidize consumers. Past research on reciprocal aquatic–terrestrial subsidies to consumers has generally focused on subsidy quantity while ignoring major differences in the nutritional composition of aquatic and terrestrial resources. Because aquatic resources contain substantially more highly unsaturated omega‐3 fatty acids (HUFAs) than terrestrial resources, aquatic subsidies may play a unique role by supplying these critical compounds to both aquatic and terrestrial consumers.
Here, we first characterized nutritional quality in terms of HUFA content in aquatic and terrestrial insect prey. We then used bulk stable isotope analyses to estimate subsidy use by stream and riparian consumers coupled with compound‐specific stable isotope analyses, which allowed us to document consumer HUFA sources. Finally, in order to understand the nutritional importance of aquatic‐derived HUFAs for riparian consumers, we conducted manipulative diet experiments on Eastern Phoebe (
Sayornis phoebe ) chicks in the laboratory.Aquatic insects were significantly enriched in HUFAs, mainly in terms of eicosapentaenoic acid (EPA), compared with terrestrial insects. Stream fishes relied mainly upon aquatic resources, while insectivorous birds varied in their use of aquatic subsidies across sites. However, like stream fishes, Eastern Phoebe chicks received HUFAs from aquatic insects, even when they were heavily reliant upon terrestrial insects for their overall diet. In the laboratory, dietary HUFAs, such as those supplied by aquatic insects, increased the growth rate and condition of Eastern Phoebe chicks.
This study demonstrates that aquatic and terrestrial subsidies are not nutritionally reciprocal from the perspective of consumers because aquatic resources are the main source of critical fatty acids for both stream and riparian consumers. It also confirms previous findings on the nutritional importance of HUFAs for riparian birds, demonstrating that an insectivorous riparian lifestyle influences avian nutritional needs. Finally, our findings raise the possibility that birds and other riparian insectivores may experience nutritional mismatches with terrestrial prey if they do not have access to high‐quality aquatic subsidies as a consequence of aquatic habitat degradation or shifts in consumer and resource phenology.
A free
Plain Language Summary can be found within the Supporting Information of this article.