skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Winterstein, Mark"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Decadal scale lake drying in interior Alaska results in lake margin colonization by willow shrub and graminoid vegetation, but the effects of these changes on plant production, biodiversity, soil properties, and soil microbial communities are not well known. We studied changes in soil organic carbon (SOC) and nitrogen (N) storage, plant and microbial community composition, and soil microbial activities in drying and non‐drying lakes in the Yukon Flats National Wildlife Refuge. Historic changes in lake area were determined using Landsat imagery. Results showed that SOC storage in drying lake margins declined by 0.13 kg C m−2 yr−1over 30 years of exposure of lake sediments, with no significant change in soil N. Lake drying resulted in an increase in graminoid and shrub aboveground net primary production (ANPP, +3% yr−1) with little change in plant functional composition. Increases in ANPP were similar in magnitude (but opposite in sign) to losses in SOC over a 30‐year drying trend. Potential decomposition rates and soil enzyme activities were lower in drying lake margins compared to stable lake margins, possibly due to high salinities in drying lake margin soils. Microbial communities shifted in response to changing plant communities, although they still retained a legacy of the previous plant community. Understanding how changing lake hydrology impacts the ecology and biogeochemistry of lake margin terrestrial ecosystems is an underexamined phenomenon with large impacts to landscape processes. 
    more » « less
    Free, publicly-accessible full text available August 1, 2025