skip to main content

Search for: All records

Creators/Authors contains: "Wise, Frank W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 25, 2024
  2. Spatiotemporal mode-locking in a laser with anomalous dispersion is investigated. Mode-locked states with varying modal content can be observed, but we find it difficult to observe highly-multimode states. We describe the properties of these mode-locked states and compare them to the results of numerical simulations. Prospects for the generation of highly-multimode states and lasers based on multimode soliton formation are discussed.

    Free, publicly-accessible full text available August 25, 2023
  3. The overall goal of photonics research is to understand and control light in new and richer ways to facilitate new and richer applications. Many major developments to this end have relied on nonlinear optical techniques, such as lasing, mode-locking, and parametric downconversion, to enable applications based on the interactions of coherent light with matter. These processes often involve nonlinear interactions between photonic and material degrees of freedom spanning multiple spatiotemporal scales. While great progress has been made with relatively simple optimizations, such as maximizing single-mode coherence or peak intensity alone, the ultimate achievement of coherent light engineering is complete, multidimensional control of light–light and light–matter interactions through tailored construction of complex optical fields and systems that exploit all of light’s degrees of freedom. This capability is now within sight, due to advances in telecommunications, computing, algorithms, and modeling. Control of highly multimode optical fields and processes also facilitates quantitative and qualitative advances in optical imaging, sensing, communication, and information processing since these applications directly depend on our ability to detect, encode, and manipulate information in as many optical degrees of freedom as possible. Today, these applications are increasingly being enhanced or enabled by both multimode engineering and nonlinearity. Here, wemore »provide a brief overview of multimode nonlinear photonics, focusing primarily on spatiotemporal nonlinear wave propagation and, in particular, on promising future directions and routes to applications. We conclude with an overview of emerging processes and methodologies that will enable complex, coherent nonlinear photonic devices with many degrees of freedom.

    « less
  4. Kerr beam cleaning in graded-index multimode fiber has been investigated in experiments with sub-nanosecond pulses and in experiments with femtosecond pulses at wavelengths where the dispersion is normal. We report a theoretical and experimental study of this effect with femtosecond pulses and anomalous dispersion. In this regime, only weak beam cleaning is observed experimentally, along with strong temporal evolution of the pulse. Numerical simulations exhibit the qualitative trends of the experiments.

  5. We systematically study geometric parametric instabilities in parabolic multimode fibers. We show, both analytically and experimentally, that global dispersion processes and self-focusing effects can substantially affect the spectral positions and widths of the generated sidebands.