- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
00000020000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Dichiara, Anthony B. (2)
-
Wise, Heather G. (2)
-
Chung, Jae-Hyun (1)
-
Goodman, Sheila M. (1)
-
Takana, Hidemasa (1)
-
Zhang, Jinyuan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The continuous flow assembly of colloidal nanoparticles from aqueous suspensions into macroscopic materials in a field-assisted double flow focusing system offers an attractive way to bridge the outstanding nanoscale characteristics of renewable cellulose nanofibrils (CNFs) at scales most common to human technologies. By incorporating single-walled carbon nanotubes (SWNTs) during the fabrication process, high-performance functional filament nanocomposites were produced. CNFs and SWNTs were first dispersed in water without any external surfactants or binding agents, and the resulting nanocolloids were aligned by means of an alternating electric field combined with extensional sheath flows. The nanoscale orientational anisotropy was then locked by a liquid−gel transition during the materials assembly into macroscopic filaments, which greatly improved their mechanical, electrical, and liquid sensing properties. Significantly, these findings pave the way toward the environmentally friendly and scalable manufacturing of a variety of multifunctional fibers for diverse applications.more » « less
-
Zhang, Jinyuan ; Goodman, Sheila M. ; Wise, Heather G. ; Dichiara, Anthony B. ; Chung, Jae-Hyun ( , Journal of Materials Chemistry C)null (Ed.)Understanding the electromechanical coupling of auxetic materials offers unique opportunities to enhance the sensitivity of piezoresistive sensors. Reports on the auxetic behavior of random fiber networks have been relatively scarce due to their less pronounced Poisson's expansions than other auxetic designs adapting periodically arranged structures. In this study, the auxetic response of hierarchical pulp-carbon nanotube networks is tailored through the localized tensional micro-fracture initiated by water-printing. The interfacial junctions among multiwalled carbon nanotubes (MWCNTs) and cellulose fibers are disintegrated and reorganized to induce the buckling of a wet CNT paper composite (CPC) network. The Poisson's ratio of −49.5 is achieved at the water-printed region. The resulting piezoresistive properties of CPC sensors exhibit high sensitivity (3.3 kPa −1 ) over a wide dynamic range (6–500 000 Pa). The novel auxetic behavior of water-printed CPC paves the way for high performance and inexpensive wearable devices.more » « less