skip to main content

Search for: All records

Creators/Authors contains: "Wiseman, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2023
  2. Free, publicly-accessible full text available August 1, 2023
  3. Free, publicly-accessible full text available June 1, 2023
  4. Abstract The Majorana Demonstrator comprises two arrays of high-purity germanium detectors constructed to search for neutrinoless double-beta decay in 76 Ge and other physics beyond the Standard Model. Its readout electronics were designed to have low electronic noise, and radioactive backgrounds were minimized by using low-mass components and low-radioactivity materials near the detectors. This paper provides a description of all components of the Majorana Demonstrator readout electronics, spanning the front-end electronics and internal cabling, back-end electronics, digitizer, and power supplies, along with the grounding scheme. The spectroscopic performance achieved with these readout electronics is also demonstrated.
    Free, publicly-accessible full text available May 1, 2023
  5. Free, publicly-accessible full text available January 1, 2023
  6. Abstract We report on the preparation of and calibration measurements with a 83 mKr source for the CENNS-10 liquid argon detector. 83 mKr atoms generated in the decay of a 83 Rb source were introduced into the detector via injection into the Ar circulation loop. Scintillation light arising from the 9.4 keV and 32.1 keV conversion electrons in the decay of 83 mKr in the detector volume were then observed. This calibration source allows the characterization of the low-energy response of the CENNS-10 detector and is applicable to other low-energy-threshold detectors. The energy resolution of the detector was measured to be 9% at the total 83 mKr decay energy of 41.5 keV. We performed an analysis to separately calibrate the detector using the two conversion electrons at 9.4 keV and 32.1 keV.
  7. null (Ed.)