skip to main content


Search for: All records

Creators/Authors contains: "Wissa, Aimy A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Birds are agile flyers that can maintain flight at high angles of attack (AoA). Such maneuverability is partially enabled by the articulation of wing feathers. Coverts are one of the feather systems that has been observed to deploy simultaneously on both the upper and lower wing sides during flight. This study uses a feather-inspired flap system to investigate the effect of upper and lower side coverts on the aerodynamic forces and moments, as well as examine the interactions between both types of flaps. Results from wind tunnel experiments show that the covert-inspired flaps can modulate lift, drag, and pitching moment. Moreover, simultaneously deflecting covert-inspired flaps on the upper and lower sides of the airfoil exhibit larger force and moment modulation ranges compared to a single-sided flap alone. Data-driven models indicate significant interactions between the upper and lower side flaps, especially during the pre-stall regime for the lift and drag response. The findings from this study are also biologically relevant to the observations of covert feathers deployment during bird flight. Thus, the methods and results summarized here can be used to formulate new hypotheses about the coverts role in bird flight and develop a framework to design covert-inspired flow and flight control devices for engineered vehicles.

     
    more » « less
  2. Abstract

    Flow control is the attempt to favorably modify a flow field’s characteristics compared to how the flow would have developed naturally along the surface. Natural flyers and swimmers exploit flow control to maintain maneuverability and efficiency under different flight and environmental conditions. Here, we review flow control strategies in birds, insects, and aquatic animals, as well as the engineered systems inspired by them. We focus mainly on passive and local flow control devices which have utility for application in small uncrewed aerial and aquatic vehicles (sUAVs) with benefits such as simplicity and reduced power consumption. We also identify research gaps related to the physics of the biological flow control and opportunities for device development and implementation on engineered vehicles.

     
    more » « less