skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Withanage, Sajith"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT CVD graphene growth typically uses commercially available cold-rolled copper foils, which includes a rich topography with scratches, dents, pits, and peaks. The graphene grown on this topography, even after annealing the foil, tends to include and reflect these topographic features. Further, the transfer of such CVD graphene to a flat substrate using a polymer transfer method also introduces wrinkles. Here, we examine an electropolishing technique for reducing native foil defects, characterize the resulting foil surface, grow single-crystal graphene on the polished foil, and examine the quality of the graphene for such defects. 
    more » « less
  2. ABSTRACT Graphene specimens produced by chemical vapor deposition usually show p-type characteristics and significant hysteresis in ambient conditions. Among many methods, current annealing appears to be a better way of cleaning the sample due to the possibility of in-situ annealing in the measurement setup. However, long-time current annealing could increase defects in the underlying substrate. Studying the hysteresis with different anneal currents in a graphene device is, therefore, a topic of interest. In this experimental work, we investigate electron/hole transport in a graphene sample in the form of a Hall bar device with a back gate, where the graphene was prepared using chemical vapor deposition on copper foils. We study the hysteresis before and after current annealing the sample by cooling down to a temperature of 35 Kfrom room temperature with a back-gate bias in a closed cycle refrigerator. 
    more » « less