Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
One of the most promising avenues to perform numerical evolutions in theories beyond general relativity is the approach, a proposal in which new “driver” equations are added to the evolution equations in a way that allows for stable numerical evolutions. In this direction, we extend the numerical relativity code p to evolve a “fixed” version of scalar Gauss-Bonnet theory in the decoupling limit, a phenomenologically interesting theory that allows for hairy black hole solutions in vacuum. We focus on isolated black hole systems both with and without linear and angular momentum, and propose a new driver equation to improve the recovery of such stationary solutions. We demonstrate the effectiveness of the latter by numerically evolving black holes that undergo spontaneous scalarization using different driver equations. Finally, we evaluate the accuracy of the obtained solutions by comparing with the original unaltered theory. Published by the American Physical Society2024more » « lessFree, publicly-accessible full text available July 1, 2025
-
SpECTRE is an open-source code for multi-scale, multi-physics problems in astrophysics and gravitational physics. In the future, we hope that it can be applied to problems across discipline boundaries in fluid dynamics, geoscience, plasma physics, nuclear physics, and engineering. It runs at petascale and is designed for future exascale computers. SpECTRE is being developed in support of our collaborative Simulating eXtreme Spacetimes (SXS) research program into the multi-messenger astrophysics of neutron star mergers, core-collapse supernovae, and gamma-ray bursts.more » « less