skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wiznica, Jan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Among the most fundamental tools for social network analysis are centrality measures, which quantify the importance of every node in the network. This centrality analysis typically disregards the possibility that the network may have been deliberately manipulated to mislead the analysis. To solve this problem, a recent study attempted to understand how a member of a social network could rewire the connections therein to avoid being identified as a leader of that network. However, the study was based on the assumption that the network analyzer—the seeker—is oblivious to any evasion attempts by the evader. In this paper, we relax this assumption by modeling the seeker and evader as strategic players in a Bayesian Stackelberg game. In this context, we study the complexity of various optimization problems, and analyze the equilibria of the game under different assumptions, thereby drawing the first conclusions in the literature regarding which centralities the seeker should use to maximize the chances of detecting a strategic evader. 
    more » « less