skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wohlgemuth, Chloe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. “[A]llain Gersten, Hopfen, und Wasser” — 1516 Reinheitsgebot We present Bavarian , a collection of sampling-based algorithms for approximating the Betweenness Centrality (BC) of all vertices in a graph. Our algorithms use Monte-Carlo Empirical Rademacher Averages (MCERAs), a concept from statistical learning theory, to efficiently compute tight bounds on the maximum deviation of the estimates from the exact values. The MCERAs provide a sample-dependent approximation guarantee much stronger than the state-of-the-art, thanks to its use of variance-aware probabilistic tail bounds. The flexibility of the MCERAs allows us to introduce a unifying framework that can be instantiated with existing sampling-based estimators of BC, thus allowing a fair comparison between them, decoupled from the sample-complexity results with which they were originally introduced. Additionally, we prove novel sample-complexity results showing that, for all estimators, the sample size sufficient to achieve a desired approximation guarantee depends on the vertex-diameter of the graph, an easy-to-bound characteristic quantity. We also show progressive-sampling algorithms and extensions to other centrality measures, such as percolation centrality. Our extensive experimental evaluation of Bavarian shows the improvement over the state-of-the-art made possible by the MCERAs (2–4× reduction in the error bound), and it allows us to assess the different trade-offs between sample size and accuracy guarantees offered by the different estimators. 
    more » « less
  2. null (Ed.)