skip to main content

Search for: All records

Creators/Authors contains: "Wojtas, Lukasz"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The styryl dehydro-Diels–Alder reaction with a conjugated diyne is reported. While typical alkyne–styrene condensation requires elevated temperatures (>160 °C), the application of a conjugated diyne allowed for effective transformation under milder conditions (80 °C). The thermally stable triazole–gold (TA–Au) catalyst further improved the reaction yields (up to 95%), producing the desired alkynyl–naphthalene in a single step with molecular oxygen as the oxidant. Sequential alkyne activation resulted in various polyaromatic hydrocarbons (PAHs) in excellent yields, highlighting the efficiency of this new strategy for the preparation of PAHs with good functional group tolerance and structural diversity.
    Free, publicly-accessible full text available August 10, 2023
  2. A new class of stable four-coordinated benzotriazole-borane compounds was developed via gold-catalyzed alkyne hydroboration. The application of polymeric (BH 2 CN) n reagent gave the formation of cyano-amine-boranes (CAB) complexes with less basic N-heterocyclic amines and anilines. Various new CABs were investigated in catalytic hydroboration to synthesize N–B cycles. The 1,2,3-benzotriazoles were identified as the only feasible N-source, giving the four coordinated borane N–B cycles (BTAB) in excellent yields (up to 90%) with good functional group tolerability. This new class of polycyclic N–B compounds showed excellent stability toward acid, base, high temperature, and photo-irradiation. The facile synthesis, excellent stability, strong and tunable fluorescence emission make BTAB interesting new fluorescent probes for future chemical and biological applications.
    Free, publicly-accessible full text available May 25, 2023
  3. Systematic investigations were performed with various substituted groups at C8 purine and ribose. A series of isoG analogs, C8-phenyl substituted isoG were synthesized and applied for Cs + coordination. The structural proximity between purine and ribose limited pentaplex formation for C8-phenyl substituted isoG derivatives. Based on this observation, deoxy isoG derivative with modification on ribose ( tert -butyldimethylsilyl ether) was applied to assemble with the Cs + cation. Critical solvent (CDCl 3 and CD 3 CN) and anion (BPh 4 − , BARF − , and PF 6 − ) effects were revealed, leading to the controllable formation of various stable isoG pentaplexes, including singly charged decamer, doubly charged decamer, and 15-mer, etc. Finally, the X-ray crystal structure of [isoG 20 Cs 3 ] 3+ (BARF − ) 3 was successfully obtained, which is the first example of multiple-layer deoxy isoG binding with the Cs + cation, providing solid evidence of this new isoG ionophore beyond two-layer sandwich self-assembly.