Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Regular decision processes (RDPs) are a subclass of non- Markovian decision processes where the transition and reward functions are guarded by some regular property of the past (a lookback). While RDPs enable intuitive and succinct rep- resentation of non-Markovian decision processes, their ex- pressive power coincides with finite-state Markov decision processes (MDPs). We introduce omega-regular decision pro- cesses (ODPs) where the non-Markovian aspect of the transi- tion and reward functions are extended to an ω-regular looka- head over the system evolution. Semantically, these looka- heads can be considered as promises made by the decision maker or the learning agent about her future behavior. In par- ticular, we assume that if the promised lookaheads are not fulfilled, then the decision maker receives a payoff of ⊥ (the least desirable payoff), overriding any rewards collected by the decision maker. We enable optimization and learning for ODPs under the discounted-reward objective by reducing them to lexicographic optimization and learning over finite MDPs. We present experimental results demonstrating the effectiveness of the proposed reduction.more » « less
-
Reinforcement learning (RL) is a powerful approach for training agents to perform tasks, but designing an appropriate re- ward mechanism is critical to its success. However, in many cases, the complexity of the learning objectives goes beyond the capabili- ties of the Markovian assumption, necessitating a more sophisticated reward mechanism. Reward machines and ω-regular languages are two formalisms used to express non-Markovian rewards for quantita- tive and qualitative objectives, respectively. This paper introduces ω- regular reward machines, which integrate reward machines with ω- regular languages to enable an expressive and effective reward mech- anism for RL. We present a model-free RL algorithm to compute ε-optimal strategies against ω-regular reward machines and evaluate the effectiveness of the proposed algorithm through experiments.more » « less
-
Huisman, M.; Păsăreanu, C.; Zhan, N. (Ed.)We study the problem of finding optimal strategies in Markov decision processes with lexicographic ω-regular objectives, which are ordered collections of ordinary ω-regular objectives. The goal is to compute strategies that maximise the probability of satisfaction of the first 𝜔-regular objective; subject to that, the strategy should also maximise the probability of satisfaction of the second ω-regular objective; then the third and so forth. For instance, one may want to guarantee critical requirements first, functional ones second and only then focus on the non-functional ones. We show how to harness the classic off-the-shelf model-free reinforcement learning techniques to solve this problem and evaluate their performance on four case studies.more » « less
-
Silva, A.; Leino, K.R.M. (Ed.)We study reinforcement learning for the optimal control of Branching Markov Decision Processes (BMDPs), a natural extension of (multitype) Branching Markov Chains (BMCs). The state of a (discrete-time) BMCs is a collection of entities of various types that, while spawning other entities, generate a payoff. In comparison with BMCs, where the evolution of a each entity of the same type follows the same probabilistic pattern, BMDPs allow an external controller to pick from a range of options. This permits us to study the best/worst behaviour of the system. We generalise model-free reinforcement learning techniques to compute an optimal control strategy of an unknown BMDP in the limit. We present results of an implementation that demonstrate the practicality of the approach.more » « less