skip to main content


Search for: All records

Creators/Authors contains: "Wolak, Christine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    DNA replication complexes (replisomes) routinely encounter proteins and unusual nucleic acid structures that can impede their progress. Barriers can include transcription complexes and R‐loops that form when RNA hybridizes with complementary DNA templates behind RNA polymerases. Cells encode several RNA polymerase and R‐loop clearance mechanisms to limit replisome exposure to these potential obstructions. One such mechanism is hydrolysis of R‐loops by ribonuclease HI (RNase HI). Here, we examine the cellular role of the interaction betweenEscherichia coliRNase HI and the single‐stranded DNA‐binding protein (SSB) in this process. Interaction with SSB localizes RNase HI foci to DNA replication sites. Mutation ofrnhAto encode an RNase HI variant that cannot interact with SSB but that maintains enzymatic activity (rnhAK60E) eliminates RNase HI foci. The mutation also produces a media‐dependent slow‐growth phenotype and an activated DNA damage response in cells lacking Rep helicase, which is an enzyme that disrupts stalled transcription complexes. RNA polymerase variants that are thought to increase or decrease R‐loop accumulation enhance or suppress, respectively, the growth phenotype ofrnhAK60E rep::kanstrains. These results identify a cellular role for the RNase HI/SSB interaction in helping to clear R‐loops that block DNA replication.

     
    more » « less