skip to main content

Search for: All records

Creators/Authors contains: "Wolf, Amelia A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Naik, Sushanta Kumar (Ed.)
    Allometric equations are often used to estimate plant biomass allocation to different tissue types from easier-to-measure quantities. Biomass allocation, and thus allometric equations, often differs by species and sometimes varies with nutrient availability. We measured biomass components for five nitrogen-fixing tree species ( Robinia pseudoacacia , Gliricidia sepium , Casuarina equisetifolia , Acacia koa , Morella faya ) and three non-fixing tree species ( Betula nigra , Psidium cattleianum , Dodonaea viscosa ) grown in field sites in New York and Hawaii for 4–5 years and subjected to four fertilization treatments. We measured total aboveground, foliar, main stem, secondary stem, and twig biomass in all species, and belowground biomass in Robinia pseudoacacia and Betula nigra , along with basal diameter, height, and canopy dimensions. The individuals spanned a wide size range (<1–16 cm basal diameter; 0.24–8.8 m height). For each biomass component, aboveground biomass, belowground biomass, and total biomass, we determined the following four allometric equations: the most parsimonious (lowest AIC) overall, the most parsimonious without a fertilization effect, the most parsimonious without canopy dimensions, and an equation with basal diameter only. For some species, the most parsimonious overall equation included fertilization effects, but fertilization effects were inconsistent across fertilization treatments. We therefore concluded that fertilization does not clearly affect allometric relationships in these species, size classes, and growth conditions. Our best-fit allometric equations without fertilization effects had the following R 2 values: 0.91–0.99 for aboveground biomass (the range is across species), 0.95 for belowground biomass, 0.80–0.96 for foliar biomass, 0.94–0.99 for main stem biomass, 0.77–0.98 for secondary stem biomass, and 0.88–0.99 for twig biomass. Our equations can be used to estimate overall biomass and biomass of tissue components for these size classes in these species, and our results indicate that soil fertility does not need to be considered when using allometric relationships for these size classes in these species. 
    more » « less
    Free, publicly-accessible full text available August 21, 2024
  2. Abstract

    Nitrogen (N)‐fixing trees are thought to break a basic rule of leaf economics: higher leaf N concentrations do not translate into higher rates of carbon assimilation. Understanding how leaf N affects photosynthesis and water use efficiency (WUE) in this ecologically important group is critical.

    We grew six N‐fixing and four non‐fixing tree species for 4–5 years at four fertilization treatments in field experiments in temperate and tropical regions to assess how functional type (N fixer vs. non‐fixer) and N limitation affected leaf N and how leaf N affected light‐saturated photosynthesis (Asat), stomatal conductance (gsw) and WUE (WUEiand δ13C).

    Asat, WUEiand δ13C, but notgsw, increased with higher leaf N. Surprisingly, N‐fixing and non‐fixing trees displayed similar scaling between leaf N and these physiological variables, and this finding was supported by reanalysis of a global dataset. N fixers generally had higher leaf N than non‐fixers, even when non‐fixers were not N‐limited at the leaf level. Leaf‐level N limitation did not alter the relationship ofAsat,gsw, WUEiand δ13C with leaf N, although it did affect the photosynthetic N use efficiency. Higher WUE was associated with higher productivity, whereas higherAsatwas not.

    Synthesis: The ecological success of N‐fixing trees depends on the effect of leaf N on carbon gain and water loss. Using a field fertilization experiment and reanalysis of a global dataset, we show that high leaf‐level photosynthesis and WUE in N fixers stems from their higher average leaf N, rather than a difference between N fixers and non‐fixers in the scaling of photosynthesis and WUE with leaf N. By clarifying the mechanism by which N fixers achieve and benefit from high WUE, our results further the understanding of global N fixer distributions.

    more » « less
  3. Serrano, Emmanuel (Ed.)
    Excluding large native mammals is an inverse test of rewilding. A 25-year exclosure experiment in an African savanna rangeland offers insight into the potentials and pitfalls of the rewilding endeavor as they relate to the native plant community. A broad theme that has emerged from this research is that entire plant communities, as well as individual plants, adjust to the absence of herbivores in ways that can ill-prepare them for the return of these herbivores. Three lines of evidence suggest that these “naïve” individuals, populations, and communities are likely to initially suffer from herbivore rewilding. First, plots protected from wild herbivores for the past 25 years have developed rich diversity of woody plants that are absent from unfenced plots, and presumably would disappear upon rewilding. Second, individuals of the dominant tree in this system, Acacia drepanolobium , greatly reduce their defences in the absence of browsers, and the sudden arrival of these herbivores (in this case, through a temporary fence break), resulted in far greater elephant damage than for their conspecifics in adjacent plots that had been continually exposed to herbivory. Third, the removal of herbivores favoured the most palatable grass species, and a large number of rarer species, which presumably would be at risk from herbivore re-introduction. In summary, the native communities that we observe in defaunated landscapes may be very different from their pre-defaunation states, and we are likely to see some large changes to these plant communities upon rewilding with large herbivores, including potential reductions in plant diversity. Lastly, our experimental manipulation of cattle represents an additional test of the role of livestock in rewilding. Cattle are in many ways ecologically dissimilar to wildlife (in particular their greater densities), but in other ways they may serve as ecological surrogates for wildlife, which could buffer ecosystems from some of the ecological costs of rewilding. More fundamentally, African savannah ecosystems represent a challenge to traditional Western definitions of “wilderness” as ecosystems free of human impacts. We support the suggestion that as we “rewild” our biodiversity landscapes, we redefine “wildness” in the 21 st Century to be inclusive of (low impact, and sometimes traditional) human practices that are compatible with the sustainability of native (and re-introduced) biodiversity. 
    more » « less
  4. Abstract

    Light and soil nitrogen availability can be strong controls of plant nitrogen (N) fixation, but data on how understory N‐fixing plants respond to these drivers are limited despite their important role in ecosystem N cycling. Furthermore, ecosystem N cycling can be altered by the introduction of species with nutrient use patterns that differ from natives. We assessed how N fixation of two exotic, understory species responded to varying light and soil N environments.

    We sampled leaf tissue fromMimosa pudicaL.,Desmodium triflorum(L.) DC., and a nonfixing reference plant (Axonopus) growing in control and two N fertilization treatments under either N‐fixing or non‐N‐fixing trees, which may alter local soil nutrient cycling, across a range of light conditions. We measured N fixation with15N isotope dilution, and ensured that N‐fixing neighbour trees were in fact fixing N. All understory plants were wild‐growing species not native to the study location.

    DesmodiumandMimosaacquired 82.6% and 71.6% of their nitrogen from fixation (%Ndfa) in the control, compared to 66.8% and 58.1% in the +10 g N m−2 year−1treatment and 73.1% and 64.7% in the +15 g N m−2 year−1treatment. These subtle %Ndfadifferences across fertilization treatments were more apparent at low light availability and disappeared at high light availability. The amount of N fixed by neighbouring trees did not influence %Ndfain the understory species.

    Synthesis. Our study shows some differences in N fixation across different nutrient environments at low light for two N‐fixing species, though the changes were small, and both species derived most of their N from fixation. These findings imply that introduced N‐fixing species could exacerbate ecosystem N enrichment, particularly under high soil N conditions.

    more » « less
  5. Biodiversity losses are a major driver of global changes in ecosystem functioning. While most studies of the relationship between biodiversity and ecosystem functioning have examined randomized species losses, trait-based filtering associated with species-specific vulnerability to drivers of diversity loss can strongly influence how ecosystem functioning responds to declining biodiversity. Moreover, the responses of ecosystem functioning to diversity loss may be mediated by environmental variability interacting with the suite of traits remaining in depauperate communities. We do not yet understand how communities resulting from realistic diversity losses (filtered by response traits) influence ecosystem functioning (via effect traits of the remaining community), especially under variable environmental conditions. Here, we directly test how realistic and randomized plant diversity losses influence productivity and invasion resistance across multiple years in a California grassland. Compared with communities based on randomized diversity losses, communities resulting from realistic (drought-driven) species losses had higher invasion resistance under climatic conditions that matched the trait-based filtering they experienced. However, productivity declined more with realistic than with randomized species losses across all years, regardless of climatic conditions. Functional response traits aligned with effect traits for productivity but not for invasion resistance. Our findings illustrate that the effects of biodiversity losses depend not only on the identities of lost species but also on how the traits of remaining species interact with varying environmental conditions. Understanding the consequences of biodiversity change requires studies that evaluate trait-mediated effects of species losses and incorporate the increasingly variable climatic conditions that future communities are expected to experience.

    more » « less
  6. Abstract

    Forests are a significant CO2sink. However, CO2sequestration in forests is radiatively offset by emissions of nitrous oxide (N2O), a potent greenhouse gas, from forest soils. Reforestation, an important strategy for mitigating climate change, has focused on maximizing CO2sequestration in plant biomass without integrating N2O emissions from soils. Although nitrogen (N)‐fixing trees are often recommended for reforestation because of their rapid growth on N‐poor soil, they can stimulate significant N2O emissions from soils. Here, we first used a field experiment to show that a N‐fixing tree (Robinia pseudoacacia) initially mitigated climate change more than a non‐fixing tree (Betula nigra). We then used our field data to parameterize a theoretical model to investigate these effects over time. Under lower N supply, N‐fixers continued to mitigate climate change more than non‐fixers by overcoming N limitation of plant growth. However, under higher N supply, N‐fixers ultimately mitigated climate change less than non‐fixers by enriching soil N and stimulating N2O emissions from soils. These results have implications for reforestation, suggesting that N‐fixing trees are more effective at mitigating climate change at lower N supply, whereas non‐fixing trees are more effective at mitigating climate change at higher N supply.

    more » « less
  7. Abstract

    Symbiotic nitrogen fixation (SNF) is a key ecological process whose impact depends on the strategy of SNF regulation—the degree to which rates of SNF change in response to limitation by N versus other resources. SNF that is obligate or exhibits incomplete downregulation can result in excess N fixation, whereas a facultative SNF strategy does not. We hypothesized that tree‐based SNF strategies differed by latitude (tropical vs. temperate) and symbiotic type (actinorhizal vs. rhizobial). Specifically, we expected tropical rhizobial symbioses to display strongly facultative SNF as an explanation of their success in low‐latitude forests. In this study we used15N isotope dilution field experiments in New York, Oregon, and Hawaii to determine SNF strategies in six N‐fixing tree symbioses. Nitrogen fertilization with +10 and +15 g N m−2 year−1for 4–5 years alleviated N limitation in all taxa, paving the way to determine SNF strategies. Contrary to our hypothesis, all six of the symbioses we studied sustained SNF even at high N.Robinia pseudoacacia(temperate rhizobial) fixed 91% of its N (%Ndfa) in controls, compared to 64% and 59% in the +10 and +15 g N m−2 year−1treatments. ForAlnus rubra(temperate actinorhizal), %Ndfawas 95%, 70%, and 60%. For the tropical species, %Ndfawas 86%, 80%, and 82% forGliricidia sepium(rhizobial); 79%, 69%, and 67% forCasuarina equisetifolia(actinorhizal); 91%, 42%, and 67% forAcacia koa(rhizobial); and 60%, 51%, and 19% forMorella faya(actinorhizal). Fertilization with phosphorus did not stimulate tree growth or SNF. These results suggest that the latitudinal abundance distribution of N‐fixing trees is not caused by a shift in SNF strategy. They also help explain the excess N in many forests where N fixers are common.

    more » « less
  8. Abstract

    Whether wild herbivores confer biotic resistance to invasion by exotic plants remains a key question in ecology. There is evidence that wild herbivores can impede invasion by exotic plants, but it is unclear whether and how this generalises across ecosystems with varying wild herbivore diversity and functional groups of plants, particularly over long‐term (decadal) time frames.

    Using data from three long‐term (13‐ to 26‐year) exclosure experiments in central Kenya, we tested the effects of wild herbivores on the density of exotic invasive cacti,Opuntia strictaandO. ficus‐indica(collectively,Opuntia), which are among the worst invasive species globally. We also examined relationships between wild herbivore richness and elephant occurrence probability with the probability ofO. strictapresence at the landscape level (6150 km2).

    Opuntiadensities were 74% to 99% lower in almost all plots accessible to wild herbivores compared to exclosure plots.Opuntiadensities also increased more rapidly across time in plots excluding wild herbivores. These effects were largely driven by megaherbivores (≥1000 kg), particularly elephants.

    At the landscape level, modelledOpuntia strictaoccurrence probability was negatively correlated with estimated species richness of wild herbivores and elephant occurrence probability. On average,O. strictaoccurrence probability fell from ~0.56 to ~0.45 as wild herbivore richness increased from 6 to 10 species and fell from ~0.57 to ~0.40 as elephant occurrence probability increased from ~0.41 to ~0.84. These multi‐scale results suggest that any facilitative effects ofOpuntiaby wild herbivores (e.g. seed/vegetative dispersal) are overridden by suppression (e.g. consumption, uprooting, trampling).

    Synthesis. Our experimental and observational findings that wild herbivores confer resistance to invasion by exotic cacti add to evidence that conserving and restoring native herbivore assemblages (particularly megaherbivores) can increase community resistance to plant invasions.

    more » « less