skip to main content


Search for: All records

Creators/Authors contains: "Wolf, Blair O."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Synopsis

    Torpor is an incredibly efficient energy-saving strategy that many endothermic birds and mammals use to save energy by lowering their metabolic rates, heart rates, and typically body temperatures. Over the last few decades, the study of daily torpor—in which torpor is used for <24 h per bout—has advanced rapidly. The papers in this issue cover the ecological and evolutionary drivers of torpor, as well as some of the mechanisms governing torpor use. We identified broad focus areas that need special attention: clearly defining the various parameters that indicate torpor use and identifying the genetic and neurological mechanisms regulating torpor. Recent studies on daily torpor and heterothermy, including the ones in this issue, have furthered the field immensely. We look forward to a period of immense growth in this field.

     
    more » « less
  2. Abstract Aim

    Understanding variation in offspring energy expenditure is important because energy is critical for growth and development. Weather may exert proximate effects on offspring energy expenditure, but in altricial species these might be masked by parental care and huddling with siblings. Such effects are particularly important to understand given changing global weather patterns, yet studies of wild offspring in the presence of parental care are lacking. Offspring energy expenditure may also vary among species due to evolved responses to environmental selection pressures, requiring studies at both proximate and ultimate levels.

    Location

    USA, South Africa, Malaysia.

    Time period

    2016–2019.

    Major taxa studied

    Songbirds.

    Methods

    We used the doubly‐labelled water technique to estimate nestling daily energy expenditure of 54 songbird species across three continents. We used Bayesian phylogenetic mixed models to test proximate and evolutionary causes of variation in offspring energy expenditure while accounting for phylogeny and phylogenetic uncertainty.

    Results

    Offspring energy expenditure increased with more rainfall and colder air temperatures, but decreased among offspring in broods with more siblings. Across species, nestling and adult mortality, but not growth rate, were positively associated with offspring energy use.

    Main conclusions

    Weather had clear proximate effects on offspring energy expenditure and parents were either unable or unwilling to fully offset these effects. However, the decrease in offspring energy use when huddling with more siblings demonstrated a modulating effect of life history traits. For example, high nest predation rates favour reduced parental care and can force offspring to spend more energy coping with environmental conditions. Furthermore, reduced energy expenditure is thought to facilitate increased longevity, which is increasingly realized with lower extrinsic mortality rates, providing an explanation for the positive association between adult mortality and offspring energy expenditure. Ultimately, both proximate and evolutionary influences need to be considered to better understand causes of offspring energetics.

     
    more » « less
  3. Rationale

    Nitrogen stable isotope ratio (δ15N) processes are not well described in reptiles, which limits reliable inference of trophic and nutrient dynamics. In this study we detailed δ15N turnover and discrimination (Δ15N) in diverse tissues of two lizard species, and compared these results with previously published carbon data (δ13C) to inform estimates of reptilian foraging ecology and nutrient physiology.

    Methods

    We quantified15N incorporation and discrimination dynamics over 360 days in blood fractions, skin, muscle, and liver ofSceloporus undulatusandCrotaphytus collaristhat differed in body mass. Tissue samples were analyzed on a continuous flow isotope ratio mass spectrometer.

    Results

    Δ15N for plasma and red blood cells (RBCs) ranged between +2.7 and +3.5‰; however, skin, muscle, and liver did not equilibrate, hindering estimates for these somatic tissues.15N turnover in plasma and RBCs ranged from 20.7 ± 4 to 303 ± 166 days among both species. Comparison with previously published δ13C results for these same samples showed that15N and13C incorporation patterns were uncoupled, especially during winter when hibernation physiology could have played a role.

    Conclusions

    Our results provide estimates of15N turnover rates and discrimination values that are essential to using and interpreting isotopes in studies of diet reconstruction, nutrient allocation, and trophic characterization in reptiles. These results also suggest that somatic tissues can be unreliable, while life history shifts in nutrient routing and metabolism potentially cause15N and13C dynamics to be decoupled.

     
    more » « less