skip to main content


Search for: All records

Creators/Authors contains: "Wolf, Margaret"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Objective

    RNA-binding proteins (RBPs) are important regulators of gene expression that influence mRNA splicing, stability, localization, transport, and translational control. In particular, RBPs play an important role in neurons, which have a complex morphology. Previously, we showed that there are many RBPs that play a conserved role in dendrite development inDrosophiladendritic arborization neurons andCaenorhabditis elegans(C. elegans) PVD neurons including the cytoplasmic polyadenylation element binding proteins (CPEBs), Orb inDrosophilaand CPB-3 inC. elegans, and the DEAD box RNA helicases, Me31B inDrosophilaand CGH-1 inC. elegans. During these studies, we observed that fluorescently-labeled CPB-3 and CGH-1 localize to cytoplasmic particles that are motile, and our research aims to further characterize these RBP-containing particles in live neurons.

    Results

    Here we extend on previous work to show that CPB-3 and CGH-1 localize to motile particles within dendrites that move at a speed consistent with microtubule-based transport. This is consistent with a model in which CPB-3 and CGH-1 influence dendrite development through the transport and localization of their mRNA targets. Moreover, CPB-3 and CGH-1 rarely localize to the same particles suggesting that these RBPs function in discrete ribonucleoprotein particles (RNPs) that may regulate distinct mRNAs.

     
    more » « less
  2. Abstract

    Accelerating warming, changes in the amount, timing, and form of precipitation, and rapidly growing populations highlight the need for improved predictions of snowmelt‐driven water supplies. Although decadal‐scale trends in reduced streamflow are common, minimal progress has been made in improving streamflow prediction on the annual time scales on which management decisions are made. Efficient allocation of dwindling supplies requires incorporating rapidly evolving knowledge of streamflow generation into parsimonious models capable of improving prediction on seasonal, annual, and multiyear time scales of water resource management. We address this need using long‐term streamflow and climate records in 12 catchments averaging 90 years of observations and totaling more than 1,080 site‐years of data. These catchments experience similar regional climate forcing each year, but are diverse enough to represent broad ranges in precipitation, temperature, vegetation, and geology characteristic of much of the western US. We find that January baseflow across all catchments exhibits a coherent, quasi‐decadal periodicity that presumably is indicative of groundwater response to decadal climate. Although the direct contribution of this discharge to streamflow is small, interannual variability in groundwater discharge is a consistently strong predictor of runoff efficiency suggesting that antecedent groundwater storage alters precipitation routing to streamflow. Incorporating antecedent groundwater storage with precipitation and melt dynamics in multiple linear regression models reduces uncertainty in annual runoff from approximately 40% to <5%. These simple models, using readily available data, provide immediately useful tools for water managers to anticipate and respond to streamflow variability on time scales of 1 to 10 years.

     
    more » « less
  3. Abstract

    The 2085 km2Jordan River Basin, and its seven sub‐catchments draining the Central Wasatch Range immediately east of Salt Lake City, UT, are home to an array of hydrologic, atmospheric, climatic and chemical research infrastructure that collectively forms the Wasatch Environmental Observatory (WEO). WEO is geographically nested within a wildland to urban land‐use gradient and built upon a strong foundation of over a century of discharge and climate records. A 2200 m gradient in elevation results in variable precipitation, temperature and vegetation patterns. Soil and subsurface structure reflect systematic variation in geology from granitic, intrusive to mixed sedimentary clastic across headwater catchments, all draining to the alluvial or colluvial sediments of the former Lake Bonneville. Winter snowfall and spring snowmelt control annual hydroclimate, rapid population growth dominates geographic change in lower elevations and urban gas and particle emissions contribute to episodes of severe air pollution in this closed‐basin. Long‐term hydroclimate observations across this diverse landscape provide the foundation for an expanding network of infrastructure in both montane and urban landscapes. Current infrastructure supports both basic and applied research in atmospheric chemistry, biogeochemistry, climate, ecology, hydrology, meteorology, resource management and urban redesign that is augmented through strong partnerships with cooperating agencies. These features allow WEO to serve as a unique natural laboratory for addressing research questions facing seasonally snow‐covered, semi‐arid regions in a rapidly changing world and an excellent facility for providing student education and research training.

     
    more » « less