skip to main content


Search for: All records

Creators/Authors contains: "Wollack, Edward J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2025
  2. ABSTRACT

    We have performed targeted searches of known extragalactic transient events at millimetre wavelengths using nine seasons (2013–2021) of 98, 150, and 229 GHz Atacama Cosmology Telescope (ACT) observations that mapped ∼40 per cent of the sky for most of the data volume. Our data cover 88 gamma-ray bursts (GRBs), 12 tidal disruption events (TDEs), and 203 other transients, including supernovae (SNe). We stack our ACT observations to increase the signal-to-noise ratio of the maps. In all cases but one, we do not detect these transients in the ACT data. The single candidate detection (event AT2019ppm), seen at ∼5σ significance in our data, appears to be due to active galactic nuclei activity in the host galaxy coincident with a transient alert. For each source in our search we provide flux upper limits. For example, the medians for the 95 per cent confidence upper limits at 98 GHz are 15, 18, and 16 mJy for GRBs, SNe, and TDEs, respectively, in the first month after discovery. The projected sensitivity of future wide-area cosmic microwave background surveys should be sufficient to detect many of these events using the methods described in this paper.

     
    more » « less
  3. Abstract

    We present a cross-correlation analysis between1resolution total intensity and polarization observations from the Atacama Cosmology Telescope (ACT) at 150 and 220 GHz and 15″ mid-infrared photometry from the Wide-field Infrared Survey Explorer (WISE) over 107 12.°5 × 12.°5 patches of sky. We detect a spatially isotropic signal in the WISE×ACTTTcross-power spectrum at 30σsignificance that we interpret as the correlation between the cosmic infrared background at ACT frequencies and polycyclic aromatic hydrocarbon (PAH) emission from galaxies in WISE, i.e., the cosmic PAH background. Within the Milky Way, the Galactic dustTTspectra are generally well described by power laws inover the range 103<< 104, but there is evidence both for variability in the power-law index and for non-power-law behavior in some regions. We measure a positive correlation between WISE total intensity and ACTE-mode polarization at 1000 <≲ 6000 at >3σin each of 35 distinct ∼100 deg2regions of the sky, suggesting that alignment between Galactic density structures and the local magnetic field persists to subparsec physical scales in these regions. The distribution ofTEamplitudes in thisrange across all 107 regions is biased to positive values, while there is no evidence for such a bias in theTBspectra. This work constitutes the highest-measurements of the Galactic dustTEspectrum to date and indicates that cross-correlation with high-resolution mid-infrared measurements of dust emission is a promising tool for constraining the spatial statistics of dust emission at millimeter wavelengths.

     
    more » « less
  4. Abstract

    We present tomographic measurements of structure growth using cross-correlations of Atacama Cosmology Telescope (ACT) DR6 and Planck cosmic microwave background (CMB) lensing maps with the unWISE Blue and Green galaxy samples, which span the redshift ranges 0.2 ≲z≲ 1.1 and 0.3 ≲z≲ 1.8, respectively. We improve on prior unWISE cross-correlations not just by making use of the new, high-precision ACT DR6 lensing maps, but also by including additional spectroscopic data for redshift calibration and by analyzing our measurements with a more flexible theoretical model. We determine the amplitude of matter fluctuations at low redshifts (z≃ 0.2–1.6), findingS8σ8(Ωm/0.3)0.5=0.813±0.021using the ACT cross-correlation alone andS8= 0.810 ± 0.015 with a combination of Planck and ACT cross-correlations; these measurements are fully consistent with the predictions from primary CMB measurements assuming standard structure growth. The addition of baryon acoustic oscillation data breaks the degeneracy betweenσ8and Ωm, allowing us to measureσ8= 0.813 ± 0.020 from the cross-correlation of unWISE with ACT andσ8= 0.813 ± 0.015 from the combination of cross-correlations with ACT and Planck. These results also agree with the expectations from primary CMB extrapolations in ΛCDM cosmology; the consistency ofσ8derived from our two redshift samples atz∼ 0.6 and 1.1 provides a further check of our cosmological model. Our results suggest that structure formation on linear scales is well described by ΛCDM even down to low redshiftsz≲ 1.

     
    more » « less
  5. Free, publicly-accessible full text available August 1, 2024
  6. Telescopes measuring cosmic microwave background (CMB) polarization on large angular scales require exquisite control of systematic errors to ensure the fidelity of the cosmological results. In particular, far-sidelobe contamination from wide angle scattering is a potentially prominent source of systematic error for large aperture microwave telescopes. Here we describe and demonstrate a ray-tracing-based modeling technique to predict far sidelobes for a three mirror anastigmat telescope designed to observe the CMB from the South Pole. Those sidelobes are produced by light scattered in the receiver optics subsequently interacting with the walls of the surrounding telescope enclosure. After comparing simulated sidelobe maps and angular power spectra for different enclosure wall treatments, we propose a highly scattering surface that would provide more than an order of magnitude reduction in the degree-scale far-sidelobe contrast compared to a typical reflective surface. We conclude by discussing the fabrication of a prototype scattering wall panel and presenting measurements of its angular scattering profile.

     
    more » « less
  7. Abstract

    Measurement of the largest angular scale (< 30) features of the cosmic microwave background (CMB) polarization is a powerful way to constrain the optical depth to reionization and search for the signature of inflation through the detection of primordialB-modes. We present an analysis of maps covering 73.6% of the sky made from the 40 GHz channel of the Cosmology Large Angular Scale Surveyor (CLASS) from 2016 August to 2022 May. Taking advantage of the measurement stability enabled by front-end polarization modulation and excellent conditions from the Atacama Desert, we show this channel achieves higher sensitivity than the analogous frequencies from satellite measurements in the range 10 << 100. Simulations show the CLASS linear (circular) polarization maps have a white noise level of125(130)μKarcmin. We measure the Galaxy-maskedEEandBBspectra of diffuse synchrotron radiation and compare to space-based measurements at similar frequencies. In combination with external data, we expand measurements of the spatial variations of the synchrotron spectral energy density (SED) to include new sky regions and measure the diffuse SED in the harmonic domain. We place a new upper limit on a background of circular polarization in the range 5 << 125 with the first bin showingD< 0.023μKCMB2at 95% confidence. These results establish a new standard for recovery of the largest-scale CMB polarization from the ground and signal exciting possibilities when the higher sensitivity and higher-frequency CLASS channels are included in the analysis.

     
    more » « less
  8. We present the design, fabrication, and measured performance of metamaterial antireflection cuttings (ARCs) for large-format alumina filters operating over more than an octave of bandwidth to be deployed at the Simons Observatory (SO). The ARC consists of subwavelength features diced into the optic’s surface using a custom dicing saw with near-micrometer accuracy. The designs achieve percent-level control over reflections at angles of incidence up to20∘<#comment/>. The ARCs were demonstrated on four 42 cm diameter filters covering the 75 to 170 GHz band and a 50 mm diameter prototype covering the 200 to 300 GHz band. The reflection and transmission of these samples were measured using a broadband coherent source that covers frequencies from 20 GHz to 1.2 THz. These measurements demonstrate percent-level control over reflectance across the targeted pass-bands and a rapid reduction in transmission as the wavelength approaches the length scale of the metamaterial structure where scattering dominates the optical response. The latter behavior enables use of the metamaterial ARC as a scattering filter in this limit.

     
    more » « less
  9. ABSTRACT

    The EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) is a balloon-borne cryogenic telescope that will survey the spectrum of diffuse emission from both the Milky Way and the cosmic web to probe star formation, the interstellar medium, and galaxy evolution across cosmic time. EXCLAIM’s primary extragalactic science survey maps 305 deg2 along the celestial equator with an R = 512 spectrometer over the frequency range ν = 420 − 540 GHz, targeting emission of the [C ii] line over redshifts 2.5 < z < 3.5 and several CO lines for z < 1. Cross-correlation with galaxy redshift catalogues isolates line emission from the large-scale structure at target redshifts. In this paper, we forecast the sensitivity for both the two-point and conditional one-point cross-correlation. We predict that EXCLAIM will detect both the [C ii]-QSO cross-power spectrum and the conditional voxel intensity distribution (CVID) at various redshifts under a broad range of [C ii] intensity models, allowing it to differentiate among these models in the literature. These forecasts for the power spectra include the effects of line interlopers and continuum foreground contamination. We then convert the joint [C ii] constraints from both the cross-power spectrum and the CVID into constraints on the [C ii] halo luminosity–mass relation $L_\mathrm{[C\, \small {II}]}(M)$ model parameters and the star formation rate density (SFRD) from [C ii] emission. We also develop sensitivity estimates for CO, showing the ability to differentiate between models.

     
    more » « less