Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Developing a thermodynamic theory of computation is a challenging task at the interface of nonequilibrium thermodynamics and computer science. In particular, this task requires dealing with difficulties such as stochastic halting times, unidirectional (possibly deterministic) transitions, and restricted initial conditions, features common in real-world computers. Here, we present a framework which tackles all such difficulties by extending the martingale theory of nonequilibrium thermodynamics to generic nonstationary Markovian processes, including those with broken detailed balance and/or absolute irreversibility. We derive several universal fluctuation relations and second-law-like inequalities that provide both lower and upper bounds on the intrinsic dissipation (mismatch cost) associated with any periodic process—in particular, the periodic processes underlying all current digital computation. Crucially, these bounds apply even if the process has stochastic stopping times, as it does in many computational machines. We illustrate our results with exhaustive numerical simulations of deterministic finite automata processing bit strings, one of the fundamental models of computation from theoretical computer science. We also provide universal equalities and inequalities for the acceptance probability of words of a given length by a deterministic finite automaton in terms of thermodynamic quantities, and outline connections between computer science and stochastic resetting. Our results, while motivated from the computational context, are applicable far more broadly.more » « lessFree, publicly-accessible full text available May 1, 2025
-
The relationship between the thermodynamic and computational properties of physical systems has been a major theoretical interest since at least the 19th century. It has also become of increasing practical importance over the last half-century as the energetic cost of digital devices has exploded. Importantly, real-world computers obey multiple physical constraints on how they work, which affects their thermodynamic properties. Moreover, many of these constraints apply to both naturally occurring computers, like brains or Eukaryotic cells, and digital systems. Most obviously, all such systems must finish their computation quickly, using as few degrees of freedom as possible. This means that they operate far from thermal equilibrium. Furthermore, many computers, both digital and biological, are modular, hierarchical systems with strong constraints on the connectivity among their subsystems. Yet another example is that to simplify their design, digital computers are required to be periodic processes governed by a global clock. None of these constraints were considered in 20th-century analyses of the thermodynamics of computation. The new field of stochastic thermodynamics provides formal tools for analyzing systems subject to all of these constraints. We argue here that these tools may help us understand at a far deeper level just how the fundamental thermodynamic properties of physical systems are related to the computation they perform.more » « lessFree, publicly-accessible full text available November 5, 2025
-
Abstract Real-world computers have operational constraints that cause nonzero entropy production (EP). In particular, almost all real-world computers are ‘periodic’, iteratively undergoing the same physical process; and ‘local’, in that subsystems evolve whilst physically decoupled from the rest of the computer. These constraints are so universal because decomposing a complex computation into small, iterative calculations is what makes computers so powerful. We first derive the nonzero EP caused by the locality and periodicity constraints for deterministic finite automata (DFA), a foundational system of computer science theory. We then relate this minimal EP to the computational characteristics of the DFA. We thus divide the languages recognised by DFA into two classes: those that can be recognised with zero EP, and those that necessarily have non-zero EP. We also demonstrate the thermodynamic advantages of implementing a DFA with a physical process that is agnostic about the inputs that it processes.more » « less
-
Abstract Digital computers implement computations using circuits, as do many naturally occurring systems (e.g., gene regulatory networks). The topology of any such circuit restricts which variables may be physically coupled during the operation of the circuit. We investigate how such restrictions on the physical coupling affects the thermodynamic costs of running the circuit. To do this we first calculate the minimal additional entropy production that arises when we run a given gate in a circuit. We then build on this calculation, to analyze how the thermodynamic costs of implementing a computation with a full circuit, comprising multiple connected gates, depends on the topology of that circuit. This analysis provides a rich new set of optimization problems that must be addressed by any designer of a circuit, if they wish to minimize thermodynamic costs.more » « less
-
Information bottleneck (IB) is a technique for extracting information in one random variable X that is relevant for predicting another random variable Y. IB works by encoding X in a compressed “bottleneck” random variable M from which Y can be accurately decoded. However, finding the optimal bottleneck variable involves a difficult optimization problem, which until recently has been considered for only two limited cases: discrete X and Y with small state spaces, and continuous X and Y with a Gaussian joint distribution (in which case optimal encoding and decoding maps are linear). We propose a method for performing IB on arbitrarily-distributed discrete and/or continuous X and Y, while allowing for nonlinear encoding and decoding maps. Our approach relies on a novel non-parametric upper bound for mutual information. We describe how to implement our method using neural networks. We then show that it achieves better performance than the recently-proposed “variational IB” method on several real-world datasets.more » « less
-
Abstract Throughout the Holocene, societies developed additional layers of administration and more information-rich instruments for managing and recording transactions and events as they grew in population and territory. Yet, while such increases seem inevitable, they are not. Here we use the Seshat database to investigate the development of hundreds of polities, from multiple continents, over thousands of years. We find that sociopolitical development is dominated first by growth in polity scale, then by improvements in information processing and economic systems, and then by further increases in scale. We thus define a Scale Threshold for societies, beyond which growth in information processing becomes paramount, and an Information Threshold, which once crossed facilitates additional growth in scale. Polities diverge in socio-political features below the Information Threshold, but reconverge beyond it. We suggest an explanation for the evolutionary divergence between Old and New World polities based on phased growth in scale and information processing. We also suggest a mechanism to help explain social collapses with no evident external causes.more » « less