- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Wong, Yu-Chern (2)
-
Brown, Katherine A. (1)
-
Butler, Benjamin J. (1)
-
Chen, Peng (1)
-
Correira, Joshua M. (1)
-
Cosgriff-Hernandez, Elizabeth (1)
-
Dortdivanlioglu, Berkin (1)
-
Fu, Bing (1)
-
Geiger, Chris J. (1)
-
Genova, Lauren A. (1)
-
Gordon, Vernita D. (1)
-
Harper, Christine E. (1)
-
Hernandez, Christopher J. (1)
-
Hui, Chung-Yuen (1)
-
Jung, Won (1)
-
Krzemiński, Łukasz (1)
-
Langford, Richard M. (1)
-
Mao, Xianwen (1)
-
O’Toole, George A. (1)
-
Roberts, Melanie F. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Attachment of bacteria onto a surface, consequent signaling, and accumulation and growth of the surface-bound bacterial population are key initial steps in the formation of pathogenic biofilms. While recent reports have hinted that surface mechanics may affect the accumulation of bacteria on that surface, the processes that underlie bacterial perception of surface mechanics and modulation of accumulation in response to surface mechanics remain largely unknown. We use thin and thick hydrogels coated on glass to create composite materials with different mechanics (higher elasticity for thin composites; lower elasticity for thick composites) but with the same surface adhesivity and chemistry. The mechanical cue stemming from surface mechanics is elucidated using experiments with the opportunistic human pathogenPseudomonas aeruginosacombined with finite-element modeling. Adhesion to thin composites results in greater changes in mechanical stress and strain in the bacterial envelope than does adhesion to thick composites with identical surface chemistry. Using quantitative microscopy, we find that adhesion to thin composites also results in higher cyclic-di-GMP levels, which in turn result in lower motility and less detachment, and thus greater accumulation of bacteria on the surface than does adhesion to thick composites. Mechanics-dependent c-di-GMP production is mediated by the cell-surface-exposed protein PilY1. The biofilm lag phase, which is longer for bacterial populations on thin composites than on thick composites, is also mediated by PilY1. This study shows clear evidence that bacteria actively regulate differential accumulation on surfaces of different stiffnessesviaperceiving varied mechanical stress and strain upon surface engagement.more » « less
-
Genova, Lauren A.; Roberts, Melanie F.; Wong, Yu-Chern; Harper, Christine E.; Santiago, Ace George; Fu, Bing; Srivastava, Abhishek; Jung, Won; Wang, Lucy M.; Krzemiński, Łukasz; et al (, Proceedings of the National Academy of Sciences)Physical forces have a profound effect on growth, morphology, locomotion, and survival of organisms. At the level of individual cells, the role of mechanical forces is well recognized in eukaryotic physiology, but much less is known about prokaryotic organisms. Recent findings suggest an effect of physical forces on bacterial shape, cell division, motility, virulence, and biofilm initiation, but it remains unclear how mechanical forces applied to a bacterium are translated at the molecular level. In Gram-negative bacteria, multicomponent protein complexes can form rigid links across the cell envelope and are therefore subject to physical forces experienced by the cell. Here we manipulate tensile and shear mechanical stress in the bacterial cell envelope and use single-molecule tracking to show that octahedral shear (but not hydrostatic) stress within the cell envelope promotes disassembly of the tripartite efflux complex CusCBA, a system used by Escherichia coli to resist copper and silver toxicity. By promoting disassembly of this protein complex, mechanical forces within the cell envelope make the bacteria more susceptible to metal toxicity. These findings demonstrate that mechanical forces can inhibit the function of cell envelope protein assemblies in bacteria and suggest the possibility that other multicomponent, transenvelope efflux complexes may be sensitive to mechanical forces including complexes involved in antibiotic resistance, cell division, and translocation of outer membrane components. By modulating the function of proteins within the cell envelope, mechanical stress has the potential to regulate multiple processes required for bacterial survival and growth.more » « less
An official website of the United States government
