skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Woods, Joshua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The study of actinide electronic structure and bonding within rigorously controlled environments is fundamental to advancing nuclear applications. Here, we report a new set of isostructural actinide organometallics; An(COTbig)2, (An = Th, U, Np, and Pu), where COTbigis the bulky 1,4-bis(triphenylsilyl)-substituted cyclooctatetraenyl dianion (1,4-(Ph3Si)2C8H6)2-. The actinide(IV) metallocene sandwiches have a clam-shell structure, offering a new molecular symmetry to exploref-orbital contributions in bonding. Combined experimental and computational studies reveal that An(COTbig)2complexes strongly differ from the previously published coplanar An(COT)2sandwiches due to the bent geometry and electron-withdrawing nature of the substituents. While COTbigdisplays comparatively weaker electron donation, the low-energyf-ftransitions in An(COTbig)2have increased molar absorptivity consistent with the removal of the parity selection rule and better energetic matching between ligand and actinide 5forbitals as the series is traversed. For Pu(COTbig)2, covalent mixing of donor 5fmetal orbitals and the ligand-π orbitals is especially strong. 
    more » « less
    Free, publicly-accessible full text available September 26, 2026
  2. We have investigated the biological properties of the osmium analogue of a potent ruthenium-based mitochondrial calcium uniporter inhibitor and have found it to possess distinct properties. 
    more » « less
  3. This paper presents the design, implementation, and experimental evaluation of a wireless biomedical implant platform exploiting the magnetoelectric effect for wireless power and bi-directional communication. As an emerging wireless power transfer method, magnetoelectric is promising for mm-scaled bio-implants because of its superior misalignment sensitivity, high efficiency, and low tissue absorption compared to other modalities [46, 59, 60]. Utilizing the same physical mechanism for power and communication is critical for implant miniaturization, but low-power magnetoelectric uplink communication has not been achieved yet. For the first time, we design and demonstrate near-zero power magnetoelectric backscatter from the mm-sized implants by exploiting the converse magnetostriction effects. The system for demonstration consists of an 8.2-mm3 wireless implantable device and a custom portable transceiver. The implant's ASIC interfacing with the magnetoelectric transducer encodes uplink data by changing the transducer's load, resulting in resonance frequency changes for frequency-shift-keying modulation. The magnetoelectrically backscattered signal is sensed and demodulated through frequency-to-digital conversion by the external transceiver. With design optimizations in data modulation and recovery, the proposed system archives > 1-kbps data rate at the 335-kHz carrier frequency, with a communication distance greater than 2 cm and a bit error rate less than 1E-3. Further, we validate the proposed system for wireless stimulation and sensing, and conducted ex-vivo tests through a 1.5-cm porcine tissue. The proposed magnetoelectric backscatter approach provides a path towards miniaturized wireless bio-implants for advanced biomedical applications like closed-loop neuromodulation. 
    more » « less