skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Wooten, Brandi L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Topological insulators and semimetals have been shown to possess intriguing thermoelectric properties promising for energy harvesting and cooling applications. However, thermoelectric transport associated with the Fermi arc topological surface states on topological Dirac semimetals remains less explored. This work systematically examines thermoelectric transport in a series of topological Dirac semimetal Cd3As2thin films grown by molecular beam epitaxy. Surprisingly, significantly enhanced Seebeck effect and anomalous Nernst effect are found at cryogenic temperatures when the Cd3As2layer is thin. In particular, a peak Seebeck coefficient of nearly 500 µV K−1and a corresponding thermoelectric power factor over 30 mW K−2 m−1are observed at 5 K in a 25‐nm‐thick sample. Combining angle‐dependent quantum oscillation analysis, magnetothermoelectric measurement, transport modeling, and first‐principles simulation, the contributions from bulk and surface conducting channels are isolated and the unusual thermoelectric properties are attributed to the topological surface states. The analysis showcases the rich thermoelectric transport physics in quantum‐confined topological Dirac semimetal thin films and suggests new routes to achieving high thermoelectric performance at cryogenic temperatures.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  2. (Bi,Sb)2(Te,Se)3 tetradymite materials are among the most efficient for thermoelectric energy conversion, and most robust for topological insulator spintronic technologies, but should possess rather disparate doping properties to be useful for either technology. In this work, we report results on the molecular beam epitaxy growth of p-type (Bi0.43Sb0.57)2Te3 and n-type Bi2(Te0.95Se0.05)3 that can contribute to both technology bases, but are especially useful for topological insulators where low bulk doping is critical for devices to leverage the Dirac-like topological surface states. Comprehensive temperature, field and angular dependent magnetotransport measurements have attested to the superior quality of these ternary tetradymite films, displaying low carrier density on the order of 1018 cm–3 and a record high mobility exceeding 104 cm2 V–1 s–1 at 2 K. The remarkable manifestation of strong Shubnikov–de Haas (SdH) quantum oscillation under 9 T at liquid helium temperatures, as well as the analyses therein, has allowed direct experimental investigation of the tetradymite electronic structure with optimized ternary alloying ratio. Our effort substantiates tetradymites as a critical platform for miniaturized thermoelectric cooling and power generation in wearable consumer electronics, as well as for futuristic topological spintronics with unprecedented magnetoelectric functionalities. 
    more » « less
    Free, publicly-accessible full text available June 1, 2025
  3. This article shows experimentally that an external electric field affects the velocity of the longitudinal acoustic phonons (vLA), thermal conductivity (κ), and diffusivity (D) in a bulk lead zirconium titanate–based ferroelectric. Phonon conduction dominates κ, and the observations are due to changes in the phonon dispersion, not in the phonon scattering. This gives insight into the nature of the thermal fluctuations in ferroelectrics, namely, phonons labeled ferrons that carry heat and polarization. It also opens the way for phonon-based electrically driven all-solid-state heat switches, an enabling technology for solid-state heat engines. A quantitative theoretical model combining piezoelectric strain and phonon anharmonicity explains the field dependence ofvLA, κ, andDwithout any adjustable parameters, thus connecting thermodynamic equilibrium properties with transport properties. The effect is four times larger than previously reported effects, which were ascribed to field-dependent scattering of phonons.

     
    more » « less