skip to main content

Search for: All records

Creators/Authors contains: "Work, Daniel B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper experimentally tests an implementation of a control barrier function (CBF) designed to guarantee a minimum time-gap in car following on an automated vehicle (AV) in live traffic, with a majority occurring on freeways. The CBF supervises a nominal unsafe PID controller on the AV’s velocity. The experimental testing spans two months of driving, of which 1.9 hours of data is collected in which the CBF and nominal controller are active. We find that violations of the guaranteed minimum time-gap are observed, as measured by the vehicle’s on-board radar unit. There are two distinct causes of the violations. First, in multi-lane traffic, Cut-ins from other vehicles represent external disturbances that can immediately violate the minimum guaranteed time gap provided by the CBF. When cut-ins occur, the CBF does eventually return the vehicle to a safe time gap. Second, even when cut-ins do not occur, system model inaccuracies (e.g., sensor error and delay, actuator error and delay) can lead to violations of the minimum time-gap. These violations are small relative to the violations that would have occurred using only the unsafe nominal control law.
    Free, publicly-accessible full text available May 1, 2023
  2. Event detection is gaining increasing attention in smart cities research. Large-scale mobility data serves as an important tool to uncover the dynamics of urban transportation systems, and more often than not the dataset is incomplete. In this article, we develop a method to detect extreme events in large traffic datasets, and to impute missing data during regular conditions. Specifically, we propose a robust tensor recovery problem to recover low-rank tensors under fiber-sparse corruptions with partial observations, and use it to identify events, and impute missing data under typical conditions. Our approach is scalable to large urban areas, taking full advantage of the spatio-temporal correlations in traffic patterns. We develop an efficient algorithm to solve the tensor recovery problem based on the alternating direction method of multipliers (ADMM) framework. Compared with existing l 1 norm regularized tensor decomposition methods, our algorithm can exactly recover the values of uncorrupted fibers of a low-rank tensor and find the positions of corrupted fibers under mild conditions. Numerical experiments illustrate that our algorithm can achieve exact recovery and outlier detection even with missing data rates as high as 40% under 5% gross corruption, depending on the tensor size and the Tucker rank of the lowmore »rank tensor. Finally, we apply our method on a real traffic dataset corresponding to downtown Nashville, TN and successfully detect the events like severe car crashes, construction lane closures, and other large events that cause significant traffic disruptions.« less
  3. Abstract This article proposes several advances to sparse nonnegative matrix factorization (SNMF) as a way to identify large-scale patterns in urban traffic data. The input to our model is traffic counts organized by time and location. Nonnegative matrix factorization additively decomposes this information, organized as a matrix, into a linear sum of temporal signatures. Penalty terms encourage this factorization to concentrate on only a few temporal signatures, with weights which are not too large. Our interest here is to quantify and compare the regularity of traffic behavior, particularly across different broad temporal windows. In addition to the rank and error, we adapt a measure introduced by Hoyer to quantify sparsity in the representation. Combining these, we construct several curves which quantify error as a function of rank (the number of possible signatures) and sparsity; as rank goes up and sparsity goes down, the approximation can be better and the error should decreases. Plots of several such curves corresponding to different time windows leads to a way to compare disorder/order at different time scalewindows. In this paper, we apply our algorithms and procedures to study a taxi traffic dataset from New York City. In this dataset, we find weekly periodicity inmore »the signatures, which allows us an extra framework for identifying outliers as significant deviations from weekly medians. We then apply our seasonal disorder analysis to the New York City traffic data and seasonal (spring, summer, winter, fall) time windows. We do find seasonal differences in traffic order.« less