skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Wray, Kyle Hollins"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Anytime algorithms enable intelligent systems to trade computation time with solution quality. To exploit this crucial ability in real-time decision-making, the system must decide when to interrupt the anytime algorithm and act on the current solution. Existing meta-level control techniques, however, address this problem by relying on significant offline work that diminishes their practical utility and accuracy. We formally introduce an online performance prediction framework that enables meta-level control to adapt to each instance of a problem without any preprocessing. Using this framework, we then present a meta-level control technique and two stopping conditions. Finally, we show that our approach outperforms existing techniques that require substantial offline work. The result is efficient nonmyopic meta-level control that reduces the overhead and increases the benefits of using anytime algorithms in intelligent systems.

     
    more » « less
  2. We present a general formal model called MODIA that can tackle a central challenge for autonomous vehicles (AVs), namely the ability to interact with an unspecified, large number of world entities. In MODIA, a collection of possible decision-problems (DPs), known a priori, are instantiated online and executed as decision-components (DCs), unknown a priori. To combine their individual action recommendations of the DCs into a single action, we propose the lexicographic executor action function (LEAF) mechanism. We analyze the complexity of MODIA and establish LEAF’s relation to regret minimization. Finally, we implement MODIA and LEAF using collections of partially observable Markov decision process (POMDP) DPs, and use them for complex AV intersection decision-making. We evaluate the approach in six scenarios within an industry-standard vehicle simulator, and present its use on an AV prototype.

     
    more » « less