skip to main content

Search for: All records

Creators/Authors contains: "Wright, D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We introduce the idea of Citizen Scientist Amplification applying the method to data gathered from the top 10 contributing citizen scientists on the Supernova Hunters project. We take a novel approach to avail of the complementary strengths of deep learning and citizen science achieving results that are competitive with experts.
  2. In 2017, the Muon Hunter project on the citizen science platform successfully gathered more than two million classification labels for nearly 140,000 camera images from VER- ITAS. The aim was to select and parameterize muon events for use in training convolutional neural networks. The success of this project proved that crowdsourcing labels for IACT image analy- sis is a viable avenue for further development of advanced machine-learning algorithms. These algorithms could potentially lend themselves to improving class separation between gamma-ray and hadronic event types. Nonetheless, it took two months to gather these labels from volun- teers, which could bemore »a bottleneck for future applications of this method. Here we present Muon Hunters 2.0: the follow-on project that demonstrates the development of unsupervised clustering techniques to gather muon labels more efficiently from volunteer classifiers.« less
  3. Free, publicly-accessible full text available March 1, 2023

    Our understanding of planetary systems different to our own has grown dramatically in the past 30 yr. However, our efforts to ascertain the degree to which the Solar system is abnormal or unique have been hindered by the observational biases inherent to the methods that have yielded the greatest exoplanet hauls. On the basis of such surveys, one might consider our planetary system highly unusual – but the reality is that we are only now beginning to uncover the true picture. In this work, we use the full 18-yr archive of data from the Anglo-Australian Planet Search to examine themore »abundance of ‘cool Jupiters’ – analogues to the Solar system’s giant planets, Jupiter and Saturn. We find that such planets are intrinsically far more common through the cosmos than their siblings, the hot Jupiters. We find that the occurrence rate of such ‘cool Jupiters’ is $6.73^{+2.09}_{-1.13}$ per cent, almost an order of magnitude higher than the occurrence of hot Jupiters (at $0.84^{+0.70}_{-0.20}$ per cent). We also find that the occurrence rate of giant planets is essentially constant beyond orbital distances of ∼1 au. Our results reinforce the importance of legacy radial velocity surveys for the understanding of the Solar system’s place in the cosmos.

    « less

    We present a detailed near-infrared chemical abundance analysis of 10 red giant members of the Galactic open cluster NGC 752. High-resolution (R ≃ 45000) near-infrared spectral data were gathered with the Immersion Grating Infrared Spectrograph, providing simultaneous coverage of the complete H and K bands. We derived the abundances of H-burning (C, N, O), α (Mg, Si, S, Ca), light odd-Z (Na, Al, P, K), Fe-group (Sc, Ti, Cr, Fe, Co, Ni), and neutron-capture (Ce, Nd, Yb) elements. We report the abundances of S, P, K, Ce, and Yb in NGC 752 for the first time. Our analysis yields solar-metallicity and solarmore »abundance ratios for almost all of the elements heavier than the CNO group in NGC 752. O and N abundances were measured from a number of OH and CN features in the H band, and C abundances were determined mainly from CO molecular lines in the K band. High-excitation $\rm{C\,\small {I}}$ lines present in both near-infrared and optical spectra were also included in the C abundance determinations. Carbon isotopic ratios were derived from the R-branch band heads of first overtone (2−0) and (3−1) 12CO and (2−0) 13CO lines near 23 440 Å and (3−1) 13CO lines at about 23 730 Å. The CNO abundances and 12C/13C ratios are all consistent with our giants having completed ‘first dredge-up’ envelope mixing of CN-cyle products. We independently assessed NGC 752 stellar membership from Gaia astrometry, leading to a new colour–magnitude diagram for this cluster. Applications of Victoria isochrones and MESA models to these data yield an updated NGC 752 cluster age (1.52 Gyr) and evolutionary stage indications for the programme stars. The photometric evidence and spectroscopic light element abundances all suggest that the most, perhaps all of the programme stars are members of the helium-burning red clump in this cluster.

    « less
  6. Free, publicly-accessible full text available January 1, 2023