Tropical forests are a key determinant of the functioning of the Earth system, but remain a major source of uncertainty in carbon cycle models and climate change projections. In this study, we present an updated land model (LM3PPA‐TV) to improve the representation of tropical forest structure and dynamics in Earth system models (ESMs). The development and parameterization of LM3PPA‐TV drew on extensive datasets on tropical tree traits and long‐term field censuses from Barro Colorado Island (BCI), Panama. The model defines a new plant functional type (PFT) based on the characteristics of shade‐tolerant, tropical tree species, implements a new growth allocation scheme based on realistic tree allometries, incorporates hydraulic constraints on biomass accumulation, and features a new compartment for tree branches and branch fall dynamics. Simulation experiments reproduced observed diurnal and seasonal patterns in stand‐level carbon and water fluxes, as well as mean canopy and understory tree growth rates, tree size distributions, and stand‐level biomass on BCI. Simulations at multiple sites captured considerable variation in biomass and size structure across the tropical forest biome, including observed responses to precipitation and temperature. Model experiments suggested a major role of water limitation in controlling geographic variation forest biomass and structure. However, the failure to simulate tropical forests under extreme conditions and the systematic underestimation of forest biomass in Paleotropical locations highlighted the need to incorporate variation in hydraulic traits and multiple PFTs that capture the distinct floristic composition across tropical domains. The continued pressure on tropical forests from global change demands models which are able to simulate alternative successional pathways and their pace to recovery. LM3PPA‐TV provides a tool to investigate geographic variation in tropical forests and a benchmark to continue improving the representation of tropical forests dynamics and their carbon storage potential in ESMs.
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
00000020000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Wright, S_Joseph (2)
-
Barrios, Héctor (1)
-
Basset, Yves (1)
-
Brown, John_W (1)
-
Calderón, Osvaldo (1)
-
Cedeño‐Sanchez, Marjorie (1)
-
Cognato, Anthony_I (1)
-
Detto, Matteo (1)
-
Fernández, D_Catalina (1)
-
Gripenberg, Sofia (1)
-
Jordan, ed., Ferenc (1)
-
Kim, Jorma (1)
-
Lewis, Owen_T (1)
-
Malyshev, Sergey (1)
-
Martínez_Cano, Isabel (1)
-
Miller, Scott_E (1)
-
Morse, Geoffrey_E (1)
-
Muller‐Landau, Helene_C (1)
-
Pacala, Stephen_W (1)
-
Pinzón‐Navarro, Sara (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Gripenberg, Sofia ; Basset, Yves ; Lewis, Owen_T ; Terry, J_Christopher_D ; Wright, S_Joseph ; Simón, Indira ; Fernández, D_Catalina ; Cedeño‐Sanchez, Marjorie ; Rivera, Marleny ; Barrios, Héctor ; et al ( , Ecology Letters)
Abstract The top‐down and indirect effects of insects on plant communities depend on patterns of host use, which are often poorly documented, particularly in species‐rich tropical forests. At Barro Colorado Island, Panama, we compiled the first food web quantifying trophic interactions between the majority of co‐occurring woody plant species and their internally feeding insect seed predators. Our study is based on more than 200 000 fruits representing 478 plant species, associated with 369 insect species. Insect host‐specificity was remarkably high: only 20% of seed predator species were associated with more than one plant species, while each tree species experienced seed predation from a median of two insect species. Phylogeny, but not plant traits, explained patterns of seed predator attack. These data suggest that seed predators are unlikely to mediate indirect interactions such as apparent competition between plant species, but are consistent with their proposed contribution to maintaining plant diversity via the Janzen–Connell mechanism.