skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wright, Thaiesha A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. For more than 40 years, protein–polymer conjugates have been widely used for many applications, industrially and biomedically. These bioconjugates have been shown to modulate the activity and stability of various proteins while introducing reusability and new activities that can be used for drug delivery, and to improve pharmacokinetic ability and stimuli-responsiveness. Techniques such as RDRP, ROMP and “click” have routinely been utilized for the development of well-defined bioconjugate and polymeric materials. The synthesis of bioconjugate materials often takes advantage of the natural amino acids present within the protein and peptide structures for a host of coupling chemistries. Polymer modification may elicit increased or decreased activity, activity retention under harsh conditions, and prolonged activity in vivo and in vitro , and introduce stimuli responsiveness. Bioconjugation has resulted in modulated thermal stability, chemical stability, storage stability, half-life and reusability. In this review we aim to provide a brief account of the field, highlight a wide range of behaviors caused by polymer conjugation, and provide directions for future work. 
    more » « less