skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wu, Baoning"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Empirical slip-rate- and state-dependent friction laws and linear fracture mechanics constitute popular approaches to explaining earthquakes. However, the physics underlying friction laws remain elusive and fracture mechanics does not specify fault strength at the various conditions relevant to crustal faulting. Here, we introduce a physical constitutive framework that augments the traditional approaches by incorporating the real area of contact as the state variable. The physical model explains the dynamics of slow and fast ruptures on transparent materials, as well as the amount of light transmitted across the interface during laboratory ruptures. The constitutive framework elucidates the origin of empirical friction laws, and the simulated ruptures can be described by linear elastic fracture mechanics. Continuous measurements of the physical state variable or its proxies during seismic cycles emerge as a novel tool for probing natural faults and advancing our understanding of the earthquake phenomenon. 
    more » « less
    Free, publicly-accessible full text available June 10, 2026