skip to main content


Search for: All records

Creators/Authors contains: "Wu, Dennis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. For optical see-through augmented reality (AR), a new method for measuring the perceived three-dimensional location of virtual objects is presented, where participants verbally report a virtual object’s location relative to both a vertical and horizontal grid. The method is tested with a small (1.95 × 1.95 × 1.95 cm) virtual object at distances of 50 to 80 cm, viewed through a Microsoft HoloLens 1 st generation AR display. Two experiments examine two different virtual object designs, whether turning in a circle between reported object locations disrupts HoloLens tracking, and whether accuracy errors, including a rightward bias and underestimated depth, might be due to systematic errors that are restricted to a particular display. Turning in a circle did not disrupt HoloLens tracking, and testing with a second display did not suggest systematic errors restricted to a particular display. Instead, the experiments are consistent with the hypothesis that, when looking downwards at a horizontal plane, HoloLens 1 st generation displays exhibit a systematic rightward perceptual bias. Precision analysis suggests that the method could measure the perceived location of a virtual object within an accuracy of less than 1 mm. 
    more » « less
  2. For optical, see-through augmented reality (AR), a new method for measuring the perceived three-dimensional location of a small virtual object is presented, where participants verbally report the virtual object's location relative to both a horizontal and vertical grid. The method is tested with a Microsoft HoloLens AR display, and examines two different virtual object designs, whether turning in a circle between reported object locations disrupts HoloLens tracking, and whether accuracy errors found with a HoloLens display might be due to systematic errors that are restricted to that particular display. Turning in a circle did not disrupt HoloLens tracking, and a second HoloLens did not suggest systematic errors restricted to a specific display. The proposed method could measure the perceived location of a virtual object to a precision of ~1 mm. 
    more » « less