skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wu, Feiyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Perching significantly enhances the energy efficiency and operational versatility of aerial robots. This article introduces a passive and tunable perching mechanism designed for smooth surfaces. The design features a bistable mechanism (BM) with a soft suction cup, augmented by two sets of shape memory alloy (SMA) actuators for active tuning. The BM enables rapid attachment upon surface contact. A set of SMA wires can increase the BM's triggering force to handle high contact speeds, while a set of SMA springs attached to the suction cup's edges can pull the cup to handle orientation misalignment. Experiments are conducted to characterize how the SMA actuators influence the BM's triggering force and the suction cup's displacement under continuous steady‐state low‐voltage heating. Additional experiments demonstrate fast tuning using momentary high‐voltage heating of the SMA actuators to enhance energy efficiency. The mechanism enables successful perching on smooth surfaces and adapt to varying contact speeds and misalignments when properly tuned for three scenarios: pendulum‐based perching, ground perching, and ceiling perching. With its tuning capability, the perching mechanism can alleviate the need for precise motion control for an aerial robot during perching, expanding the applications of aerial robots in areas like environmental monitoring or infrastructure inspection. 
    more » « less
  2. Perching onto objects can allow flying robots to stay at a desired height at low or no cost of energy. This paper presents a novel passive mechanism for aerial perching onto smooth surfaces. This mechanism is made from a bistable mechanism and a soft suction cup. Different from existing designs, it can be easily attached onto and detached from a surface, but it can also hold a large weight when attached to a surface. Further, the mechanism can still work when the suction cup is not precisely aligned with the surface, alleviating the requirement for precise motion control of flying robots. The attachment and detachment are facilitated by the bistable mechanism, while the strong holding is enabled by a locking mechanism that can disable the bistable mechanism. We conduct experiments to characterize the required forces for successful attachments and detachments. We also equip the perching mechanism onto a quadcopter to demonstrate it can be successfully used for perching onto smooth surfaces (e.g., glass). 
    more » « less