Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present a solution to image-based cell counting with dot annotations for both 2D and 3D cases. Current approaches have two major limitations: 1) inability to provide precise locations when cells overlap; and 2) reliance on costly labeled data. To address these two issues, we first adopt the inverse distance kernel, which yields separable density maps for better localization. Second, we take advantage of unlabeled data by self-supervised learning with focal consistency loss, which we propose for our pixel-wise task. These two contributions complement each other. Together, our framework compares favorably against stateof- the-art methods, including methods using full annotations on 2D and 3D benchmarks, while significantly reducing the amount of labeled data needed for training. In addition, we provide a tool to expedite the labeling process for dot annotations. Finally, we make the source code and labeling tool publicly available.more » « lessFree, publicly-accessible full text available February 21, 2026
-
Functional Magnetic Resonance Image (fMRI) is commonly employed to study human brain activity, since it offers insight into the relationship between functional fluctuations and human behavior. To enhance analysis and comprehension of brain activity, Graph Neural Networks (GNNs) have been widely applied to the analysis of functional connectivities (FC) derived from fMRI data, due to their ability to capture the synergistic interactions among brain regions. However, in the human brain, performing complex tasks typically involves the activation of certain pathways, which could be represented as paths across graphs. As such, conventional GNNs struggle to learn from these pathways due to the long-range dependencies of multiple pathways. To address these challenges, we introduce a novel framework BrainMAP to learn multiple pathways in brain networks. BrainMAP leverages sequential models to identify long-range correlations among sequentialized brain regions and incorporates an aggregation module based on Mixture of Experts (MoE) to learn from multiple pathways. Our comprehensive experiments highlight BrainMAP's superior performance. Furthermore, our framework enables explanatory analyses of crucial brain regions involved in tasks.more » « lessFree, publicly-accessible full text available April 11, 2026
-
The emergence of Positron Emission Tomography (PET) imaging allows us to quantify the burden of amyloid plaques in-vivo, which is one of the hallmarks of Alzheimer’s disease (AD). However, the invasive exposure to radiation and high imaging cost significantly restrict the application of PET in characterizing the evolution of pathology burden which often requires longitudinal PET image sequences. In this regard, we propose a proof-of-concept solution to generate the complete trajectory of pathological events throughout the brain based on very limited number of PET scans. We present a novel variational autoencoder model to learn a latent population-level representation of neurodegeneration process based on the longitudinal β-amyloid measurements at each brain region and longitudinal diagnostic stages. As the propagation of pathological burdens follow the topology of brain connectome, we further cast our neural network into a supervised sequential graph VAE, where we use the brain network to guide the representation learning. Experiments show that the disentangled representation can capture disease-related dynamics of amyloid and forecast the level of amyloid depositions at future time points.more » « less
-
Tremendous recent literature show that associations between different brain regions, i.e., brain connectivity, provide early symptoms of neurological disorders. Despite significant efforts made for graph neural network (GNN) techniques, their focus on graph nodes makes the state-of-the-art GNN methods not suitable for classifying brain connectivity as graphs where the objective is to characterize disease-relevant network dysfunction patterns on graph links. To address this issue, we propose Multi-resolution Edge Network (MENET) to detect disease-specific connectomic benchmarks with high discrimination power across diagnostic categories. The core of MENET is a novel graph edge-wise transform that we propose, which allows us to capture multi-resolution “connectomic” features. Using a rich set of the connectomic features, we devise a graph learning framework to jointly select discriminative edges and assign diagnostic labels for graphs. Experiments on two real datasets show that MENET accurately predicts diagnostic labels and identify brain connectivities highly associated with neurological disorders such as Alzheimer’s Disease and Attention-Deficit/Hyperactivity Disorder.more » « less
-
Image-based cell counting is a fundamental yet challenging task with wide applications in biological research. In this paper, we propose a novel unified deep network framework designed to solve this problem for various cell types in both 2D and 3D images. Specifically, we first propose SAU-Net for cell counting by extending the segmentation network U-Net with a Self-Attention module. Second, we design an extension of Batch Normalization (BN) to facilitate the training process for small datasets. In addition, a new 3D benchmark dataset based on the existing mouse blastocyst (MBC) dataset is developed and released to the community. Our SAU-Net achieves state-of-the-art results on four benchmark 2D datasets - synthetic fluorescence microscopy (VGG) dataset, Modified Bone Marrow (MBM) dataset, human subcutaneous adipose tissue (ADI) dataset, and Dublin Cell Counting (DCC) dataset, and the new 3D dataset, MBC. The BN extension is validated using extensive experiments on the 2D datasets, since GPU memory constraints preclude use of 3D datasets. The source code is available at https://github.com/mzlr/sau-net.more » « less