skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Wu, Manxi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. How can a social planner adaptively incentivize selfish agents who are learning in a strategic environment to induce a socially optimal outcome in the long run? We propose a two-timescale learning dynamics to answer this question in games. In our learning dynamics, players adopt a class of learning rules to update their strategies at a faster timescale, while a social planner updates the incentive mechanism at a slower timescale. In particular, the update of the incentive mechanism is based on each player’s externality, which is evaluated as the difference between the player’s marginal cost and the society’s marginal cost in each time step. We show that any fixed point of our learning dynamics corresponds to the optimal incentive mechanism such that the corresponding Nash equilibrium also achieves social optimality. We also provide sufficient conditions for the learning dynamics to converge to a fixed point so that the adaptive incentive mechanism eventually induces a socially optimal outcome. Finally, as an example, we demonstrate that the sufficient conditions for convergence are satisfied in Cournot competition with finite players. 
    more » « less