skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wu, Tianrui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We cross-check the Hubble Space Telescope (HST) Cepheid/Type Ia supernova (SN Ia) distance ladder, which yields the most precise localH0, against early James Webb Space Telescope (JWST) subsamples (∼1/4 of the HST sample) from SH0ES and CCHP, calibrated only with NGC 4258. We find HST Cepheid distances agree well (∼1σ) with all combinations of methods, samples, and telescopes. The comparisons explicitly include the measurement uncertainty of each method in NGC 4258, an oft-neglected but dominant term. Mean differences are ∼0.03 mag, far smaller than the 0.18 mag “Hubble tension.” Combining all measures produces the strongest constraint yet on the linearity of HST Cepheid distances, 0.994 ±0.010, ruling out distance-dependent bias or offset as the source of the tension at ∼7σ. However, current JWST subsamples produce large sampling differences in H0whose size and direction we can directly estimate from the full HST set. We show that ΔH0∼ 2.5 km s−1Mpc−1between the CCHP JWST program and the full HST sample is entirely consistent with differences in sample selection. We combine all JWST samples into a new distance-limited set of 16 SNe Ia atD≤ 25 Mpc. Using JWST Cepheids, JAGB, and tip of the red giant branch, we find 73.4 ± 2.1, 72.2 ± 2.2, and 72.1 ± 2.2 km s−1Mpc−1, respectively. Explicitly accounting for common supernovae, the three-method JWST result isH0= 72.6 ± 2.0, similar toH0= 72.8 expected from HST Cepheids in the same galaxies. The small JWST sample trivially lowers the Hubble tension significance due to small-sample statistics and is not yet competitive with the HST set (42 SNe Ia and 4 anchors), which yields 73.2 ± 0.9. Still, the joint JWST sample provides important cross-checks that the HST data pass. 
    more » « less