Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Peptides are widely used in biomaterials due to their ease of synthesis, ability to signal cells, and modify the properties of biomaterials. A key benefit of using peptides is that they are natural substrates for cell‐secreted enzymes, which creates the possibility of utilizing cell‐secreted enzymes for tuning cell–material interactions. However, these enzymes can also induce unwanted degradation of bioactive peptides in biomaterials, or in peptide therapies. Liquid chromatography–mass spectrometry (LC–MS) is a widely used, powerful methodology that can separate complex mixtures of molecules and quantify numerous analytes within a single run. There are several challenges in using LC–MS for the multiplexed quantification of cell‐induced peptide degradation, including the need for nondegradable internal standards and the identification of optimal sample storage conditions. Another problem is that cell culture media and biological samples typically contain both proteins and lipids that can accumulate on chromatography columns and degrade their performance. Removing these constituents can be expensive, time‐consuming, and increases sample variability. However, loading unpurified samples onto the column without removing lipids and proteins will foul the column. Here, we show that directly injecting complex, unpurified samples onto the LC–MS without any purification enables rapid and accurate quantification of peptide concentration and that hundreds of LC–MS runs can be done on a single column without significantly diminishing the ability to quantify the degradation of peptide libraries. To understand how repeated injections degrade column performance, a model library was injected into the LC–MS hundreds of times. It was then determined that column failure is evident when hydrophilic peptides are no longer retained on the column and that failure can be easily identified by using standard peptide mixtures for column benchmarking. In total, this work introduces a simple and effective method for simultaneously quantifying the degradation of dozens of peptides in cell culture. By providing a streamlined and cost‐effective method for the direct quantification of peptide degradation in complex biological samples, this work enables more efficient assessment of peptide stability and functionality, facilitating the development of advanced biomaterials and peptide‐based therapies.more » « less
-
Generating oxygen vacancies (Vö) in vanadium pentoxide (V 2 O 5 ) has been demonstrated as an effective approach to tailor its electrochemical properties. The present study investigates three different kinds of conductive polymer (CP = PPy, PEDOT, and PANI) coated V 2 O 5 nanofibers with Vö generated at the interface during the polymerization process. Surface Vö form a local electric field and promote the charge transfer kinetics of the resulting Vö-V 2 O 5 /CP nanocables, and the accompanying V 4+ and V 3+ ions may also catalyze the redox reactions and improve the supercapacitor performance. The differences and similarities of three different CP coatings have been compared and discussed, and are dependent on their polymerization conditions and coating thickness. The distribution of Vö in the surface layer and in the bulk has been elaborated and the corresponding effects on the electrochemical properties and supercapacitor performance have also been investigated. Vö-V 2 O 5 /CP can deliver a high capacity of up to 614 F g −1 at a current rate of 0.5 A g −1 and supercapacitors with Vö-V 2 O 5 /CP demonstrated excellent cycling stability over 15 000 cycles at a rate of 10 A g −1 .more » « less