skip to main content

Search for: All records

Creators/Authors contains: "Wu, Zhen-Yu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Electrochemical oxygen reduction to hydrogen peroxide (H 2 O 2 ) in acidic media, especially in proton exchange membrane (PEM) electrode assembly reactors, suffers from low selectivity and the lack of low-cost catalysts. Here we present a cation-regulated interfacial engineering approach to promote the H 2 O 2 selectivity (over 80%) under industrial-relevant generation rates (over 400 mA cm −2 ) in strong acidic media using just carbon black catalyst and a small number of alkali metal cations, representing a 25-fold improvement compared to that without cation additives. Our density functional theory simulation suggests a “shielding effect” of alkali metal cations which squeeze away the catalyst/electrolyte interfacial protons and thus prevent further reduction of generated H 2 O 2 to water. A double-PEM solid electrolyte reactor was further developed to realize a continuous, selective (∼90%) and stable (over 500 hours) generation of H 2 O 2 via implementing this cation effect for practical applications.
    Free, publicly-accessible full text available December 1, 2023
  2. Abstract Electrochemical water oxidation reaction (WOR) to hydrogen peroxide (H 2 O 2 ) via a 2e − pathway provides a sustainable H 2 O 2 synthetic route, but is challenged by the traditional 4e − counterpart of oxygen evolution. Here we report a CO 2 /carbonate mediation approach to steering the WOR pathway from 4e − to 2e − . Using fluorine-doped tin oxide electrode in carbonate solutions, we achieved high H 2 O 2 selectivity of up to 87%, and delivered unprecedented H 2 O 2 partial currents of up to 1.3 A cm −2 , which represents orders of magnitude improvement compared to literature. Molecular dynamics simulations, coupled with electron paramagnetic resonance and isotope labeling experiments, suggested that carbonate mediates the WOR pathway to H 2 O 2 through the formation of carbonate radical and percarbonate intermediates. The high selectivity, industrial-relevant activity, and good durability open up practical opportunities for delocalized H 2 O 2 production.
    Free, publicly-accessible full text available December 1, 2023
  3. Free, publicly-accessible full text available April 1, 2023
  4. Abstract Oxygen reduction reaction towards hydrogen peroxide (H 2 O 2 ) provides a green alternative route for H 2 O 2 production, but it lacks efficient catalysts to achieve high selectivity and activity simultaneously under industrial-relevant production rates. Here we report a boron-doped carbon (B-C) catalyst which can overcome this activity-selectivity dilemma. Compared to the state-of-the-art oxidized carbon catalyst, B-C catalyst presents enhanced activity (saving more than 210 mV overpotential) under industrial-relevant currents (up to 300 mA cm −2 ) while maintaining high H 2 O 2 selectivity (85–90%). Density-functional theory calculations reveal that the boron dopant site is responsible for high H 2 O 2 activity and selectivity due to low thermodynamic and kinetic barriers. Employed in our porous solid electrolyte reactor, the B-C catalyst demonstrates a direct and continuous generation of pure H 2 O 2 solutions with high selectivity (up to 95%) and high H 2 O 2 partial currents (up to ~400 mA cm −2 ), illustrating the catalyst’s great potential for practical applications in the future.
  5. Abstract We present spectroscopic measurements of the Rossiter–McLaughlin effect for WASP-148b, the only known hot Jupiter with a nearby warm-Jupiter companion, from the WIYN/NEID and Keck/HIRES instruments. This is one of the first scientific results reported from the newly commissioned NEID spectrograph, as well as the second obliquity constraint for a hot Jupiter system with a close-in companion, after WASP-47. WASP-148b is consistent with being in alignment with the sky-projected spin axis of the host star, with λ = − 8 .° 2 − 9 .° 7 + 8 .° 7 . The low obliquity observed in the WASP-148 system is consistent with the orderly-alignment configuration of most compact multi-planet systems around cool stars with obliquity constraints, including our solar system, and may point to an early history for these well-organized systems in which migration and accretion occurred in isolation, with relatively little disturbance. By contrast, previous results have indicated that high-mass and hot stars appear to more commonly host a wide range of misaligned planets: not only single hot Jupiters, but also compact systems with multiple super-Earths. We suggest that, to account for the high rate of spin–orbit misalignments in both compact multi-planet and isolated-hot-Jupiter systems orbiting high-mass andmore »hot stars, spin–orbit misalignments may be caused by distant giant planet perturbers, which are most common around these stellar types.« less