skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Wunder, Jr, Elsio_A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Land use change can elevate disease risk by creating conditions beneficial to species that carry zoonotic pathogens. Observations of concordant global trends in increased pathogen prevalence or disease incidence and landscape change have generated concerns that urbanization could increase transmission risk of some pathogens. Yet host–pathogen relationships underlying transmission risk have not been well characterized within cities, even where contact between humans and species capable of transmitting pathogens of concern occurs. We addressed this deficit by testing the hypothesis that areas in cities experiencing greater population loss and infrastructure decline (i.e., counter‐urbanization) can support a greater diversity of host species and a larger and more diverse pool of pathogens. We did so by characterizing pathogenicLeptospirainfection relative to rodent host richness and abundance across a mosaic of abandonment in post‐Katrina New Orleans (Louisiana, USA). We found thatLeptospirainfection loads were highest in areas that harboured increased rodent species richness (which ranged from one to four rodent species detected). Areas with greater host co‐occurrence also harboured a greater abundance of hosts, including the host species most likely to carry high infection loads, indicating thatLeptospirainfection can be amplified by increases in overall and relative host abundance. Evidence of shared infection among rodent host species indicates that cross‐species transmission ofLeptospiraprobably increases infection at sites with greater host richness. Additionally, evidence that rodent co‐occurrence and abundance andLeptospirainfection load parallel abandonment suggests that counter‐urbanization can elevate zoonotic disease risk within cities, particularly in underserved communities that are burdened with disproportionate concentrations of derelict properties.

     
    more » « less