skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xi, Nan_Miles"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract SummaryThe number of cells measured in single-cell transcriptomic data has grown fast in recent years. For such large-scale data, subsampling is a powerful and often necessary tool for exploratory data analysis. However, the easiest random subsampling is not ideal from the perspective of preserving rare cell types. Therefore, diversity-preserving subsampling is required for fast exploration of cell types in a large-scale dataset. Here, we propose scSampler, an algorithm for fast diversity-preserving subsampling of single-cell transcriptomic data. Availability and implementationscSampler is implemented in Python and is published under the MIT source license. It can be installed by “pip install scsampler” and used with the Scanpy pipline. The code is available on GitHub: https://github.com/SONGDONGYUAN1994/scsampler. An R interface is available at: https://github.com/SONGDONGYUAN1994/rscsampler. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less